Microsoft Windows Server Training Classes in Lansing, Michigan

Learn Microsoft Windows Server in Lansing, Michigan and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Microsoft Windows Server related training offerings in Lansing, Michigan: Microsoft Windows Server Training

We offer private customized training for groups of 3 or more attendees.

Microsoft Windows Server Training Catalog

cost: $ 2190length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2190length: 5 day(s)
cost: $ 2190length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 3200length: 9 day(s)
cost: $ 490length: 1 day(s)

.NET Classes

Exchange Server Classes

Windows 10 Classes

Windows 8 Classes

cost: $ 2190length: 5 day(s)
cost: $ 2190length: 5 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

I remember the day like it was yesterday. Pac Man had finally arrived on the Atari 2600.  It was a clear and sunny day, but it was slightly brisk. My dad drove us down to the video store about three miles from our Michigan house. If I remember correctly, the price for the game was $24.99.  It was quite expensive for the day, probably equaling a $70 game in today’s market, but it was mine. There *was* no question about it. If you purchase a game, it’s your game… right?

You couldn’t be more wrong.  With all the licensing agreements in games today, you only purchase the right to play it. You don’t actually “own” the game. 

Today, game designers want total control over the money that comes in for a game. They add in clauses that keep the game from being resold, rented, borrowed, copied, etc. All of the content in the game, including the items you find that are specifically for you, are owned by the software developer. Why, you ask, do they do this? It’s all about the money.

This need for greed started years ago, when people started modifying current games on the market. One of the first games like this was Doom. There were so many third part mods made, but because of licensing agreement, none of these versions were available for resale. The end user, or you, had to purchase Doom before they could even install the mod.  None of these “modders” were allowed to make any money off their creation.

The original article was posted by Michael Veksler on Quora

A very well known fact is that code is written once, but it is read many times. This means that a good developer, in any language, writes understandable code. Writing understandable code is not always easy, and takes practice. The difficult part, is that you read what you have just written and it makes perfect sense to you, but a year later you curse the idiot who wrote that code, without realizing it was you.

The best way to learn how to write readable code, is to collaborate with others. Other people will spot badly written code, faster than the author. There are plenty of open source projects, which you can start working on and learn from more experienced programmers.

Readability is a tricky thing, and involves several aspects:

  1. Never surprise the reader of your code, even if it will be you a year from now. For example, don’t call a function max() when sometimes it returns the minimum().
  2. Be consistent, and use the same conventions throughout your code. Not only the same naming conventions, and the same indentation, but also the same semantics. If, for example, most of your functions return a negative value for failure and a positive for success, then avoid writing functions that return false on failure.
  3. Write short functions, so that they fit your screen. I hate strict rules, since there are always exceptions, but from my experience you can almost always write functions short enough to fit your screen. Throughout my carrier I had only a few cases when writing short function was either impossible, or resulted in much worse code.
  4. Use descriptive names, unless this is one of those standard names, such as i or it in a loop. Don’t make the name too long, on one hand, but don’t make it cryptic on the other.
  5. Define function names by what they do, not by what they are used for or how they are implemented. If you name functions by what they do, then code will be much more readable, and much more reusable.
  6. Avoid global state as much as you can. Global variables, and sometimes attributes in an object, are difficult to reason about. It is difficult to understand why such global state changes, when it does, and requires a lot of debugging.
  7. As Donald Knuth wrote in one of his papers: “Early optimization is the root of all evil”. Meaning, write for readability first, optimize later.
  8. The opposite of the previous rule: if you have an alternative which has similar readability, but lower complexity, use it. Also, if you have a polynomial alternative to your exponential algorithm (when N > 10), you should use that.

Use standard library whenever it makes your code shorter; don’t implement everything yourself. External libraries are more problematic, and are both good and bad. With external libraries, such as boost, you can save a lot of work. You should really learn boost, with the added benefit that the c++ standard gets more and more form boost. The negative with boost is that it changes over time, and code that works today may break tomorrow. Also, if you try to combine a third-party library, which uses a specific version of boost, it may break with your current version of boost. This does not happen often, but it may.

Don’t blindly use C++ standard library without understanding what it does - learn it. You look at std::vector::push_back() documentation at it tells you that its complexity is O(1), amortized. What does that mean? How does it work? What are benefits and what are the costs? Same with std::map, and with std::unordered_map. Knowing the difference between these two maps, you’d know when to use each one of them.

Never call new or delete directly, use std::make_unique and [cost c++]std::make_shared[/code] instead. Try to implement usique_ptr, shared_ptr, weak_ptr yourself, in order to understand what they actually do. People do dumb things with these types, since they don’t understand what these pointers are.

Every time you look at a new class or function, in boost or in std, ask yourself “why is it done this way and not another?”. It will help you understand trade-offs in software development, and will help you use the right tool for your job. Don’t be afraid to peek into the source of boost and the std, and try to understand how it works. It will not be easy, at first, but you will learn a lot.

Know what complexity is, and how to calculate it. Avoid exponential and cubic complexity, unless you know your N is very low, and will always stay low.

Learn data-structures and algorithms, and know them. Many people think that it is simply a wasted time, since all data-structures are implemented in standard libraries, but this is not as simple as that. By understanding data-structures, you’d find it easier to pick the right library. Also, believe it or now, after 25 years since I learned data-structures, I still use this knowledge. Half a year ago I had to implemented a hash table, since I needed fast serialization capability which the available libraries did not provide. Now I am writing some sort of interval-btree, since using std::map, for the same purpose, turned up to be very very slow, and the performance bottleneck of my code.

Notice that you can’t just find interval-btree on Wikipedia, or stack-overflow. The closest thing you can find is Interval tree, but it has some performance drawbacks. So how can you implement an interval-btree, unless you know what a btree is and what an interval-tree is? I strongly suggest, again, that you learn and remember data-structures.

These are the most important things, which will make you a better programmer. The other things will follow.

It is said that spoken languages shape thoughts by their inclusion and exclusion of concepts, and by structuring them in different ways. Similarly, programming languages shape solutions by making some tasks easier and others less aesthetic. Using F# instead of C# reshapes software projects in ways that prefer certain development styles and outcomes, changing what is possible and how it is achieved.

F# is a functional language from Microsoft's research division. While once relegated to the land of impractical academia, the principles espoused by functional programming are beginning to garner mainstream appeal.

As its name implies, functions are first-class citizens in functional programming. Blocks of code can be stored in variables, passed to other functions, and infinitely composed into higher-order functions, encouraging cleaner abstractions and easier testing. While it has long been possible to store and pass code, F#'s clean syntax for higher-order functions encourages them as a solution to any problem seeking an abstraction.

F# also encourages immutability. Instead of maintaining state in variables, functional programming with F# models programs as a series of functions converting inputs to outputs. While this introduces complications for those used to imperative styles, the benefits of immutability mesh well with many current developments best practices.

For instance, if functions are pure, handling only immutable data and exhibiting no side effects, then testing is vastly simplified. It is very easy to test that a specific block of code always returns the same value given the same inputs, and by modeling code as a series of immutable functions, it becomes possible to gain a deep and highly precise set of guarantees that software will behave exactly as written.

Further, if execution flow is exclusively a matter of routing function inputs to outputs, then concurrency is vastly simplified. By shifting away from mutable state to immutable functions, the need for locks and semaphores is vastly reduced if not entirely eliminated, and multi-processor development is almost effortless in many cases.

Type inference is another powerful feature of many functional languages. It is often unnecessary to specify argument and return types, since any modern compiler can infer them automatically. F# brings this feature to most areas of the language, making F# feel less like a statically-typed language and more like Ruby or Python. F# also eliminates noise like braces, explicit returns, and other bits of ceremony that make languages feel cumbersome.

Functional programming with F# makes it possible to write concise, easily testable code that is simpler to parallelize and reason about. However, strict functional styles often require imperative developers to learn new ways of thinking that are not as intuitive. Fortunately, F# makes it possible to incrementally change habits over time. Thanks to its hybrid object-oriented and functional nature, and its clean interoperability with the .net platform, F# developers can gradually shift to a more functional mindset while still using the algorithms and libraries with which they are most familiar.

 

Related F# Resources:

F# Programming Essentials Training

Facebook was originally intended as a way for people to stay in touch with friends and family members by sharing pictures and status updates on their timeline. As the website's popularity has grown, so has criticism that it is becoming one giant, online high school.

Online Bullying

There has been a dramatic increase in recent years in the number of online bullying cases due to the introduction of social media. Bullying isn't just limited to younger Facebook users, either. Many adult users have also resorted to bashing others online through nasty status updates and cruel comments.

Prior to social media, bullying in high school involved "kick me" signs and toilet swirling. Facebook and other social media outlets have allowed users to take bullying to a whole other level. Victims can no longer escape bullying by leaving school or work. The torture continues online, at anytime and anyplace.

Status "Likes"

In high school, everyone wants to be part of the popular crowd; people who are outgoing, beautiful, and seem like they have everything.  Posting a status update is similar to wanting to be popular. Once an update is posted, many users wait with bated breath to see how many friends will "like" their status. They believe that the more "likes" they receive, the more popular they are.

If that isn’t enough, there are many Facebook games that involve "liking" someone's status. Games like "Truth Is", where someone likes a status update and in return the poster writes how they really feel about the friend on their Facebook wall. This can get touchy, especially if the two people aren't friends outside of Facebook. It's similar to high school where someone desperately wants another person to like them, but when they find out how that person really feels they are crushed.

Relationships Are Difficult to Keep Private

When someone signs up for Facebook they’re asked to complete their profile, which includes a relationship section. Users can select from different options including "single", "married", "widowed", and "divorced". Whenever someone changes their relationship status, the update shows up on each of their friend's news feeds.

It's easy to see how this feature correlates with high school where everyone talks about who is dating who or which couple broke up. It used to be that after graduation, people were able to keep their relationships more to themselves. Not so anymore in the age of social media. Now everyone has the ability to state their opinion on a friend's relationship status, either by "liking" their status change or by commenting on it.

Facebook has presented many benefits to its users, including the ability to rekindle old high school friendships. What one must understand when they sign up for the service is that they are opening themselves up to the same criticism and drama that takes place in a high school setting.

Proceed with caution!

Tech Life in Michigan

Home of the Ford Motor Company and many other Fortune 500 and Fortune 1000 Companies, Michigan has a list of famous people that have made their mark on society. Famous Michiganians: Francis Ford Coppola film director; Henry Ford industrialist, Earvin Magic Johnson basketball player; Charles A. Lindbergh aviator; Madonna singer; Stevie Wonder singer; John T. Parsons inventor and William R. Hewlett inventor.
We learn something every day, and lots of times it's that what we learned the day before was wrong. Bill Vaughan
other Learning Options
Software developers near Lansing have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Michigan that offer opportunities for Microsoft Windows Server developers
Company Name City Industry Secondary Industry
Lear Corporation Southfield Manufacturing Automobiles, Boats and Motor Vehicles
TRW Automotive Holdings Corp. Livonia Manufacturing Automobiles, Boats and Motor Vehicles
Spartan Stores, Inc. Byron Center Retail Grocery and Specialty Food Stores
Steelcase Inc. Grand Rapids Manufacturing Furniture Manufacturing
Valassis Communications, Inc. Livonia Business Services Advertising, Marketing and PR
Autoliv, Inc. Auburn Hills Manufacturing Automobiles, Boats and Motor Vehicles
Cooper-Standard Automotive Group Novi Manufacturing Automobiles, Boats and Motor Vehicles
Penske Automotive Group, Inc. Bloomfield Hills Retail Automobile Dealers
Con-Way Inc. Ann Arbor Transportation and Storage Freight Hauling (Rail and Truck)
Meritor, Inc. Troy Manufacturing Automobiles, Boats and Motor Vehicles
Visteon Corporation Van Buren Twp Manufacturing Automobiles, Boats and Motor Vehicles
Affinia Group, Inc. Ann Arbor Manufacturing Automobiles, Boats and Motor Vehicles
Perrigo Company Allegan Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
BorgWarner Inc. Auburn Hills Manufacturing Automobiles, Boats and Motor Vehicles
Auto-Owners Insurance Lansing Financial Services Insurance and Risk Management
DTE Energy Company Detroit Energy and Utilities Gas and Electric Utilities
Whirlpool Corporation Benton Harbor Manufacturing Tools, Hardware and Light Machinery
Herman Miller, Inc. Zeeland Manufacturing Furniture Manufacturing
Universal Forest Products Grand Rapids Manufacturing Furniture Manufacturing
Masco Corporation Inc. Taylor Manufacturing Concrete, Glass, and Building Materials
PULTEGROUP, INC. Bloomfield Hills Real Estate and Construction Real Estate & Construction Other
CMS Energy Corporation Jackson Energy and Utilities Energy and Utilities Other
Stryker Corporation Portage Healthcare, Pharmaceuticals and Biotech Medical Devices
General Motors Company (GM) Detroit Manufacturing Automobiles, Boats and Motor Vehicles
Kellogg Company Battle Creek Manufacturing Food and Dairy Product Manufacturing and Packaging
The Dow Chemical Company Midland Manufacturing Chemicals and Petrochemicals
Kelly Services, Inc. Troy Business Services HR and Recruiting Services
Ford Motor Company Dearborn Manufacturing Automobiles, Boats and Motor Vehicles

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Michigan since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Microsoft Windows Server programming
  • Get your questions answered by easy to follow, organized Microsoft Windows Server experts
  • Get up to speed with vital Microsoft Windows Server programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Lansing, Michigan Microsoft Windows Server Training , Lansing, Michigan Microsoft Windows Server Training Classes, Lansing, Michigan Microsoft Windows Server Training Courses, Lansing, Michigan Microsoft Windows Server Training Course, Lansing, Michigan Microsoft Windows Server Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.