Linux Unix Training Classes in Allentown, Pennsylvania

Learn Linux Unix in Allentown, Pennsylvania and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Linux Unix related training offerings in Allentown, Pennsylvania: Linux Unix Training

We offer private customized training for groups of 3 or more attendees.
Allentown  Upcoming Instructor Led Online and Public Linux Unix Training Classes
Enterprise Linux System Administration Training/Class 28 July, 2025 - 1 August, 2025 $2190
HSG Training Center instructor led online
Allentown, Pennsylvania 18102
Hartmann Software Group Training Registration
Linux Fundaments GL120 Training/Class 2 June, 2025 - 6 June, 2025 $2090
HSG Training Center instructor led online
Allentown, Pennsylvania 18102
Hartmann Software Group Training Registration
LINUX SHELL SCRIPTING Training/Class 30 June, 2025 - 1 July, 2025 $990
HSG Training Center instructor led online
Allentown, Pennsylvania 18102
Hartmann Software Group Training Registration
OpenShift Fundamentals Training/Class 9 June, 2025 - 11 June, 2025 $2090
HSG Training Center instructor led online
Allentown, Pennsylvania 18102
Hartmann Software Group Training Registration
RED HAT ENTERPRISE LINUX AUTOMATION WITH ANSIBLE Training/Class 15 September, 2025 - 18 September, 2025 $2735
HSG Training Center instructor led online
Allentown, Pennsylvania 18102
Hartmann Software Group Training Registration
RED HAT ENTERPRISE LINUX SYSTEMS ADMIN I Training/Class 19 May, 2025 - 23 May, 2025 $2090
HSG Training Center instructor led online
Allentown, Pennsylvania 18102
Hartmann Software Group Training Registration
RED HAT ENTERPRISE LINUX SYSTEMS ADMIN II Training/Class 18 August, 2025 - 21 August, 2025 $1890
HSG Training Center instructor led online
Allentown, Pennsylvania 18102
Hartmann Software Group Training Registration
RHCSA EXAM PREP Training/Class 16 June, 2025 - 20 June, 2025 $2090
HSG Training Center instructor led online
Allentown, Pennsylvania 18102
Hartmann Software Group Training Registration
DOCKER WITH KUBERNETES ADMINISTRATION Training/Class 21 July, 2025 - 25 July, 2025 $2490
HSG Training Center instructor led online
Allentown, Pennsylvania 18102
Hartmann Software Group Training Registration

View all Scheduled Linux Unix Training Classes

Linux Unix Training Catalog

cost: $ 1390length: 4 day(s)
cost: $ 1390length: 4 day(s)
cost: $ 1990length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2800length: 4 day(s)
cost: $ 2490length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2290length: 4 day(s)
cost: $ 2190length: 5 day(s)
cost: $ 1690length: 4 day(s)
cost: $ 1890length: 3 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 1290length: 3 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 2490length: 4 day(s)
cost: $ 1290length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1090length: 3 day(s)
cost: $ 2200length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2400length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2490length: 4 day(s)
cost: $ 990length: 2 day(s)
cost: $ 2290length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 2400length: 4 day(s)
cost: $ 2090length: 3 day(s)
cost: $ 2090length: 3 day(s)
cost: $ 1790length: 4 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1690length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2590length: 3 day(s)
cost: $ 1690length: 5 day(s)
cost: $ 1690length: 5 day(s)
cost: $ 1690length: 5 day(s)
cost: $ 1390length: 4 day(s)

DevOps Classes

cost: $ 1690length: 3 day(s)
cost: $ 1690length: 3 day(s)

Foundations of Web Design & Web Authoring Classes

cost: $ 1290length: 3 day(s)
cost: $ 790length: 2 day(s)
cost: $ 1190length: 3 day(s)

Java Programming Classes

cost: $ 1390length: 3 day(s)
cost: $ 1390length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

No industry is as global as software development.  Pervasive networking means that software developers can, and do, work from anywhere. This has led many businesses to hiring development subcontractors in other countries, aiming to find good development talent at lower prices, or with fewer hassles on entry into the US.

While this is an ongoing and dynamic equilibrium, there are compelling reasons for doing software development in the United States, or using a hybrid model where some parts of the task are parceled out to foreign contractors and some are handled locally.

Development Methodologies

The primary reason for developing software overseas is cost reduction. The primary argument against overseas software development is slower development cycles. When software still used the "waterfall" industrial process for project management (where everything is budgeted in terms of time at the beginning of the project), offshoring was quite compelling. As more companies emulate Google and Facebook's process of "release early, update often, and refine from user feedback," an increasing premium has been put on software teams that are small enough to be agile (indeed, the development process is called Agile Development), and centralized enough, in terms of time zones, that collaborators can work together. This has made both Google and Facebook leaders in US-based software development, though they both still maintain teams of developers in other countries tasked with specific projects.

Localization For Americans

The United States is still one of the major markets for software development, and projects aimed at American customers needs to meet cultural norms. This applies to any country, not just the U.S. This puts a premium on software developers who aren't just fluent in English, but native speakers, and who understand American culture. While it's possible (and even likely) to make server-side software, and management utilities that can get by with terse, fractured English, anything that's enterprise-facing or consumer-facing requires more work on polish and presentation than is practical using outsourced developers. There is a reason why the leaders in software User Interface development are all US-based companies, and that's because consumer-focused design is still an overwhelming US advantage.

Ongoing Concerns

The primary concern for American software development is talent production. The US secondary education system produces a much smaller percentage of students with a solid math and engineering background, and while US universities lead the world in their computer science and engineering curricula, slightly under half of all of those graduates are from foreign countries, because American students don't take the course loads needed to succeed in them. Software development companies in the United States are deeply concerned about getting enough engineers and programmers out of the US university system. Some, such as Google, are trying to get programmers hooked on logical problem solving at a young age, with the Summer of Code programs. Others, like Microsoft, offer scholarships for computer science degrees.

Overall, the changes in project management methodologies mean that the US is the current leader in software development, and so long as the primary market for software remains English and American-centric, that's going to remain true. That trend is far from guaranteed, and in the world of software, things can change quickly.

 

Over time, companies are migrating from COBOL to the latest standard of C# solutions due to reasons such as cumbersome deployment processes, scarcity of trained developers, platform dependencies, increasing maintenance fees. Whether a company wants to migrate to reporting applications, operational infrastructure, or management support systems, shifting from COBOL to C# solutions can be time-consuming and highly risky, expensive, and complicated. However, the following four techniques can help companies reduce the complexity and risk around their modernization efforts. 

All COBOL to C# Solutions are Equal 

It can be daunting for a company to sift through a set of sophisticated services and tools on the market to boost their modernization efforts. Manual modernization solutions often turn into an endless nightmare while the automated ones are saturated with solutions that generate codes that are impossible to maintain and extend once the migration is over. However, your IT department can still work with tools and services and create code that is easier to manage if it wants to capitalize on technologies such as DevOps. 

Narrow the Focus 

Most legacy systems are incompatible with newer systems. For years now, companies have passed legacy systems to one another without considering functional relationships and proper documentation features. However, a detailed analysis of databases and legacy systems can be useful in decision-making and risk mitigation in any modernization effort. It is fairly common for companies to uncover a lot of unused and dead code when they analyze their legacy inventory carefully. Those discoveries, however can help reduce the cost involved in project implementation and the scope of COBOL to C# modernization. Research has revealed that legacy inventory analysis can result in a 40% reduction of modernization risk. Besides making the modernization effort less complex, trimming unused and dead codes and cost reduction, companies can gain a lot more from analyzing these systems. 

Understand Thyself 

For most companies, the legacy system entails an entanglement of intertwined code developed by former employees who long ago left the organization. The developers could apply any standards and left behind little documentation, and this made it extremely risky for a company to migrate from a COBOL to C# solution. In 2013, CIOs teamed up with other IT stakeholders in the insurance industry in the U.S to conduct a study that found that only 18% of COBOL to C# modernization projects complete within the scheduled period. Further research revealed that poor legacy application understanding was the primary reason projects could not end as expected. 

Furthermore, using the accuracy of the legacy system for planning and poor understanding of the breadth of the influence of the company rules and policies within the legacy system are some of the risks associated with migrating from COBOL to C# solutions. The way an organization understands the source environment could also impact the ability to plan and implement a modernization project successfully. However, accurate, in-depth knowledge about the source environment can help reduce the chances of cost overrun since workers understand the internal operations in the migration project. That way, companies can understand how time and scope impact the efforts required to implement a plan successfully. 

Use of Sequential Files 

Companies often use sequential files as an intermediary when migrating from COBOL to C# solution to save data. Alternatively, sequential files can be used for report generation or communication with other programs. However, software mining doesn’t migrate these files to SQL tables; instead, it maintains them on file systems. Companies can use data generated on the COBOL system to continue to communicate with the rest of the system at no risk. Sequential files also facilitate a secure migration path to advanced standards such as MS Excel. 

Modern systems offer companies a range of portfolio analysis that allows for narrowing down their scope of legacy application migration. Organizations may also capitalize on it to shed light on migration rules hidden in the ancient legacy environment. COBOL to C# modernization solution uses an extensible and fully maintainable code base to develop functional equivalent target application. Migration from COBOL solution to C# applications involves language translation, analysis of all artifacts required for modernization, system acceptance testing, and database and data transfer. While it’s optional, companies could need improvements such as coding improvements, SOA integration, clean up, screen redesign, and cloud deployment.

In programming, memory leaks are a common issue, and it occurs when a computer uses memory but does not give it back to the operating system. Experienced programmers have the ability to diagnose a leak based on the symptoms. Some believe every undesired increase in memory usage is a memory leak, but this is not an accurate representation of a leak. Certain leaks only run for a short time and are virtually undetectable.

Memory Leak Consequences

Applications that suffer severe memory leaks will eventually exceed the memory resulting in a severe slowdown or a termination of the application.

How to Protect Code from Memory Leaks?

Preventing memory leaks in the first place is more convenient than trying to locate the leak later. To do this, you can use defensive programming techniques such as smart pointers for C++.  A smart pointer is safer than a raw pointer because it provides augmented behavior that raw pointers do not have. This includes garbage collection and checking for nulls.

If you are going to use a raw pointer, avoid operations that are dangerous for specific contexts. This means pointer arithmetic and pointer copying. Smart pointers use a reference count for the object being referred to. Once the reference count reaches zero, the excess goes into garbage collection. The most commonly used smart pointer is shared_ptr from the TR1 extensions of the C++ standard library.

Static Analysis

The second approach to memory leaks is referred to as static analysis and attempts to detect errors in your source-code. CodeSonar is one of the effective tools for detection. It provides checkers for the Power of Ten coding rules, and it is especially competent at procedural analysis. However, some might find it lagging for bigger code bases.

How to Handle a Memory Leak

For some memory leaks, the only solution is to read through the code to find and correct the error. Another one of the common approaches to C++ is to use RAII, which an acronym for Resource Acquisition Is Initialization. This approach means associating scoped objects using the acquired resources, which automatically releases the resources when the objects are no longer within scope. RAII has the advantage of knowing when objects exist and when they do not. This gives it a distinct advantage over garbage collection. Regardless, RAII is not always recommended because some situations require ordinary pointers to manage raw memory and increase performance. Use it with caution.

The Most Serious Leaks

Urgency of a leak depends on the situation, and where the leak has occurred in the operating system. Additionally, it becomes more urgent if the leak occurs where the memory is limited such as in embedded systems and portable devices.

To protect code from memory leaks, people have to stay vigilant and avoid codes that could result in a leak. Memory leaks continue until someone turns the system off, which makes the memory available again, but the slow process of a leak can eventually prejudice a machine that normally runs correctly.

 

Related:

The Five Principles of Performance

In Demand IT Skills

Python and Ruby, each with roots going back into the 1990s, are two of the most popular interpreted programming languages today. Ruby is most widely known as the language in which the ubiquitous Ruby on Rails web application framework is written, but it also has legions of fans that use it for things that have nothing to do with the web. Python is a big hit in the numerical and scientific computing communities at the present time, rapidly displacing such longtime stalwarts as R when it comes to these applications. It too, however, is also put to a myriad of other uses, and the two languages probably vie for the title when it comes to how flexible their users find them.

A Matter of Personality...


That isn't to say that there aren't some major, immediately noticeable, differences between the two programming tongues. Ruby is famous for its flexibility and eagerness to please; it is seen by many as a cleaned-up continuation of Perl's "Do What I Mean" philosophy, whereby the interpreter does its best to figure out the meaning of evening non-canonical syntactic constructs. In fact, the language's creator, Yukihiro Matsumoto, chose his brainchild's name in homage to that earlier language's gemstone-inspired moniker.

Python, on the other hand, takes a very different tact. In a famous Python Enhancement Proposal called "The Zen of Python," longtime Pythonista Tim Peters declared it to be preferable that there should only be a single obvious way to do anything. Python enthusiasts and programmers, then, generally prize unanimity of style over syntactic flexibility compared to those who choose Ruby, and this shows in the code they create. Even Python's whitespace-sensitive parsing has a feel of lending clarity through syntactical enforcement that is very much at odds with the much fuzzier style of typical Ruby code.

For example, Python's much-admired list comprehension feature serves as the most obvious way to build up certain kinds of lists according to initial conditions:

a = [x**3 for x in range(10,20)]
b = [y for y in a if y % 2 == 0]

first builds up a list of the cubes of all of the numbers between 10 and 19 (yes, 19), assigning the result to 'a'. A second list of those elements in 'a' which are even is then stored in 'b'. One natural way to do this in Ruby is probably:

a = (10..19).map {|x| x ** 3}
b = a.select {|y| y.even?}

but there are a number of obvious alternatives, such as:

a = (10..19).collect do |x|
x ** 3
end

b = a.find_all do |y|
y % 2 == 0
end

It tends to be a little easier to come up with equally viable, but syntactically distinct, solutions in Ruby compared to Python, even for relatively simple tasks like the above. That is not to say that Ruby is a messy language, either; it is merely that it is somewhat freer and more forgiving than Python is, and many consider Python's relative purity in this regard a real advantage when it comes to writing clear, easily understandable code.

And Somewhat One of Performance

Tech Life in Pennsylvania

The first daily newspaper was published in Philadelphia in 1784. In 1946 Philadelphia became home to the first computer. The State College Area High School was the first school in the country to teach drivers education in 1958. Pennsylvania has an impressive collection of schools, 500 public school districts, thousands of private schools, publicly funded colleges and universities, and over 100 private institutions of higher education. The University of Pennsylvania is also the Commonwealth's only, and geographically the most southern, Ivy League school.
Education is the kindling of a flame, not the filling of a vessel. Socrates
other Learning Options
Software developers near Allentown have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Pennsylvania that offer opportunities for Linux Unix developers
Company Name City Industry Secondary Industry
The Hershey Company Hershey Manufacturing Food and Dairy Product Manufacturing and Packaging
Crown Holdings, Inc. Philadelphia Manufacturing Metals Manufacturing
Air Products and Chemicals, Inc. Allentown Manufacturing Chemicals and Petrochemicals
Dick's Sporting Goods Inc Coraopolis Retail Sporting Goods, Hobby, Book, and Music Stores
Mylan Inc. Canonsburg Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
UGI Corporation King Of Prussia Energy and Utilities Gas and Electric Utilities
Aramark Corporation Philadelphia Business Services Business Services Other
United States Steel Corporation Pittsburgh Manufacturing Manufacturing Other
Comcast Corporation Philadelphia Telecommunications Cable Television Providers
PPL Corporation Allentown Energy and Utilities Gas and Electric Utilities
SunGard Wayne Computers and Electronics IT and Network Services and Support
WESCO Distribution, Inc. Pittsburgh Energy and Utilities Energy and Utilities Other
PPG Industries, Inc. Pittsburgh Manufacturing Chemicals and Petrochemicals
Airgas Inc Radnor Manufacturing Chemicals and Petrochemicals
Rite Aid Corporation Camp Hill Retail Grocery and Specialty Food Stores
The PNC Financial Services Group Pittsburgh Financial Services Banks
Universal Health Services, Inc. King Of Prussia Healthcare, Pharmaceuticals and Biotech Hospitals
Erie Insurance Group Erie Financial Services Insurance and Risk Management
Pierrel Research Wayne Healthcare, Pharmaceuticals and Biotech Biotechnology
Unisys Corporation Blue Bell Computers and Electronics IT and Network Services and Support
Lincoln Financial Group Radnor Financial Services Insurance and Risk Management
AmerisourceBergen Wayne Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
Sunoco, Inc. Philadelphia Manufacturing Chemicals and Petrochemicals
CONSOL Energy Inc. Canonsburg Energy and Utilities Gas and Electric Utilities
H. J. Heinz Company Pittsburgh Manufacturing Food and Dairy Product Manufacturing and Packaging

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Pennsylvania since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Linux Unix programming
  • Get your questions answered by easy to follow, organized Linux Unix experts
  • Get up to speed with vital Linux Unix programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Allentown, Pennsylvania Linux Unix Training , Allentown, Pennsylvania Linux Unix Training Classes, Allentown, Pennsylvania Linux Unix Training Courses, Allentown, Pennsylvania Linux Unix Training Course, Allentown, Pennsylvania Linux Unix Training Seminar
training locations
Pennsylvania cities where we offer Linux Unix Training Classes

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.