.NET Training Classes in Springfield, Ohio

Learn .NET in Springfield, Ohio and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current .NET related training offerings in Springfield, Ohio: .NET Training

We offer private customized training for groups of 3 or more attendees.
Springfield  Upcoming Instructor Led Online and Public .NET Training Classes
ASP.NET Core MVC (VS2022) Training/Class 7 July, 2025 - 8 July, 2025 $890
HSG Training Center instructor led online
Springfield, Ohio 45503
Hartmann Software Group Training Registration
Object-Oriented Programming in C# Rev. 6.1 Training/Class 23 June, 2025 - 27 June, 2025 $2090
HSG Training Center instructor led online
Springfield, Ohio 45503
Hartmann Software Group Training Registration

.NET Training Catalog

cost: $ 1890length: 4 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 890length: 2 day(s)
cost: $ 1390length: 3 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1685length: 4 day(s)
cost: $ 2190length: 5 day(s)
cost: $ 1590length: 4 day(s)
cost: $ 890length: 1 day(s)
cost: $ 1090length: 3 day(s)
cost: $ 1590length: 4 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 2090length: 4 day(s)

C# Programming Classes

cost: $ 890length: 2 day(s)
cost: $ 890length: 2 day(s)
cost: $ 990length: 2 day(s)
cost: $ 2090length: 5 day(s)

Design Patterns Classes

cost: $ 1750length: 3 day(s)

F# Programming Classes

cost: $ 790length: 2 day(s)

JUnit, TDD, CPTC, Web Penetration Classes

Microsoft Development Classes

cost: $ 790length: 2 day(s)

Microsoft Windows Server Classes

cost: $ 3200length: 9 day(s)

SharePoint Classes

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

As the cloud buzz is getting louder with every passing day you are tempted to take the big leap into the cloud but may have restrained yourself paranoid by ad infinitum cloud security discussions floating on the web. No one can deny the fact that your data is the lifeblood your business. So, undoubtedly its security is of paramount importance for survival of your business.  As cloud computing is a paradigm shift from the traditional ways of using computing resources, you must understand its practical security aspects.

Is Cloud Computing Safe?

There can’t be a binary answer (Yes or No) to this question. But with my experience and as an authority on the subject I can tell you that technologies enabling Cloud services are not in any way less secure than the traditional or on-premise hosting model.  Also, with the evolution of technology, the cloud providers are getting matured and almost all the providers are offering built-in security, privacy, data backups and risk management as a part of their core service.If you are not a big IT company then you must ask yourself:

·         Can an on-premise solution or a traditional hosting provider match the same level of standard security and privacy requirement as provided by the specialist cloud provider whose core competency lies in providing state of the art security and privacy?

The Zen of Python, by Tim Peters has been adopted by many as a model summary manual of python's philosophy.  Though these statements should be considered more as guideline and not mandatory rules, developers worldwide find the poem to be on a solid guiding ground.


Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Studying a functional programming language is a good way to discover new approaches to problems and different ways of thinking. Although functional programming has much in common with logic and imperative programming, it uses unique abstractions and a different toolset for solving problems. Likewise, many current mainstream languages are beginning to pick up and integrate various techniques and features from functional programming.

Many authorities feel that Haskell is a great introductory language for learning functional programming. However, there are various other possibilities, including Scheme, F#, Scala, Clojure, Erlang and others.

Haskell is widely recognized as a beautiful, concise and high-performing programming language. It is statically typed and supports various cool features that augment language expressivity, including currying and pattern matching. In addition to monads, the language support a type-class system based on methods; this enables higher encapsulation and abstraction. Advanced Haskell will require learning about combinators, lambda calculus and category theory. Haskell allows programmers to create extremely elegant solutions.

Scheme is another good learning language -- it has an extensive history in academia and a vast body of instructional documents. Based on the oldest functional language -- Lisp -- Scheme is actually very small and elegant. Studying Scheme will allow the programmer to master iteration and recursion, lambda functions and first-class functions, closures, and bottom-up design.

Supported by Microsoft and growing in popularity, F# is a multi-paradigm, functional-first programming language that derives from ML and incorporates features from numerous languages, including OCaml, Scala, Haskell and Erlang. F# is described as a functional language that also supports object-oriented and imperative techniques. It is a .NET family member. F# allows the programmer to create succinct, type-safe, expressive and efficient solutions. It excels at parallel I/O and parallel CPU programming, data-oriented programming, and algorithmic development.

Scala is a general-purpose programming and scripting language that is both functional and object-oriented. It has strong static types and supports numerous functional language techniques such as pattern matching, lazy evaluation, currying, algebraic types, immutability and tail recursion. Scala -- from "scalable language" -- enables coders to write extremely concise source code. The code is compiled into Java bytecode and executes on the ubiquitous JVM (Java virtual machine).

Like Scala, Clojure also runs on the Java virtual machine. Because it is based on Lisp, it treats code like data and supports macros. Clojure's immutability features and time-progression constructs enable the creation of robust multithreaded programs.

Erlang is a highly concurrent language and runtime. Initially created by Ericsson to enable real-time, fault-tolerant, distributed applications, Erlang code can be altered without halting the system. The language has a functional subset with single assignment, dynamic typing, and eager evaluation. Erlang has powerful explicit support for concurrent processes.

 

Computer Programming as a Career?

What little habits make you a better software engineer?

It is said that spoken languages shape thoughts by their inclusion and exclusion of concepts, and by structuring them in different ways. Similarly, programming languages shape solutions by making some tasks easier and others less aesthetic. Using F# instead of C# reshapes software projects in ways that prefer certain development styles and outcomes, changing what is possible and how it is achieved.

F# is a functional language from Microsoft's research division. While once relegated to the land of impractical academia, the principles espoused by functional programming are beginning to garner mainstream appeal.

As its name implies, functions are first-class citizens in functional programming. Blocks of code can be stored in variables, passed to other functions, and infinitely composed into higher-order functions, encouraging cleaner abstractions and easier testing. While it has long been possible to store and pass code, F#'s clean syntax for higher-order functions encourages them as a solution to any problem seeking an abstraction.

F# also encourages immutability. Instead of maintaining state in variables, functional programming with F# models programs as a series of functions converting inputs to outputs. While this introduces complications for those used to imperative styles, the benefits of immutability mesh well with many current developments best practices.

For instance, if functions are pure, handling only immutable data and exhibiting no side effects, then testing is vastly simplified. It is very easy to test that a specific block of code always returns the same value given the same inputs, and by modeling code as a series of immutable functions, it becomes possible to gain a deep and highly precise set of guarantees that software will behave exactly as written.

Further, if execution flow is exclusively a matter of routing function inputs to outputs, then concurrency is vastly simplified. By shifting away from mutable state to immutable functions, the need for locks and semaphores is vastly reduced if not entirely eliminated, and multi-processor development is almost effortless in many cases.

Type inference is another powerful feature of many functional languages. It is often unnecessary to specify argument and return types, since any modern compiler can infer them automatically. F# brings this feature to most areas of the language, making F# feel less like a statically-typed language and more like Ruby or Python. F# also eliminates noise like braces, explicit returns, and other bits of ceremony that make languages feel cumbersome.

Functional programming with F# makes it possible to write concise, easily testable code that is simpler to parallelize and reason about. However, strict functional styles often require imperative developers to learn new ways of thinking that are not as intuitive. Fortunately, F# makes it possible to incrementally change habits over time. Thanks to its hybrid object-oriented and functional nature, and its clean interoperability with the .net platform, F# developers can gradually shift to a more functional mindset while still using the algorithms and libraries with which they are most familiar.

 

Related F# Resources:

F# Programming Essentials Training

Tech Life in Ohio

Ulysses S. Grant, Rutherford B. Hayes, James A. Garfield, Benjamin Harrison, William McKinley, William H. Taft, and Warren G. Harding, were all U.S. Presidents born in Ohio. The first recognized university in Ohio was Ohio University founded in 1804. It wasn’t long until the first interracial and coeducational college in the United States, Oberlin, was founded in 1833. The Buckeye State produced some interesting discoveries such as: Charles Goodyear discovering the process of vulcanizing rubber in 1839; Roy J. Plunkett inventing Teflon in 1938; and Charles Kettering inventing the automobile self-starter in 1911.
Bad times have a scientific value. These are occasions a good learner would not miss. Ralph Waldo Emerson
other Learning Options
Software developers near Springfield have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Ohio that offer opportunities for .NET developers
Company Name City Industry Secondary Industry
Nationwide Insurance Company Columbus Financial Services Insurance and Risk Management
Owens Corning Toledo Manufacturing Concrete, Glass, and Building Materials
FirstEnergy Corp Akron Energy and Utilities Gas and Electric Utilities
The Lubrizol Corporation Wickliffe Manufacturing Chemicals and Petrochemicals
Sherwin-Williams Cleveland Retail Hardware and Building Material Dealers
Key Bank Cleveland Financial Services Banks
TravelCenters of America, Inc. Westlake Retail Gasoline Stations
Dana Holding Company Maumee Manufacturing Automobiles, Boats and Motor Vehicles
O-I (Owens Illinois), Inc. Perrysburg Manufacturing Concrete, Glass, and Building Materials
Big Lots Stores, Inc. Columbus Retail Department Stores
Limited Brands, Inc. Columbus Retail Clothing and Shoes Stores
Cardinal Health Dublin Healthcare, Pharmaceuticals and Biotech Healthcare, Pharmaceuticals, and Biotech Other
Progressive Corporation Cleveland Financial Services Insurance and Risk Management
Parker Hannifin Corporation Cleveland Manufacturing Manufacturing Other
American Financial Group, Inc. Cincinnati Financial Services Insurance and Risk Management
American Electric Power Company, Inc Columbus Energy and Utilities Gas and Electric Utilities
Fifth Third Bancorp Cincinnati Financial Services Banks
Macy's, Inc. Cincinnati Retail Department Stores
Goodyear Tire and Rubber Co. Akron Manufacturing Plastics and Rubber Manufacturing
The Kroger Co. Cincinnati Retail Grocery and Specialty Food Stores
Omnicare, Inc. Cincinnati Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
The Procter and Gamble Company Cincinnati Consumer Services Personal Care

training details locations, tags and why hsg

the hartmann software group advantage
A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Ohio since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about .NET programming
  • Get your questions answered by easy to follow, organized .NET experts
  • Get up to speed with vital .NET programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Springfield, Ohio .NET Training , Springfield, Ohio .NET Training Classes, Springfield, Ohio .NET Training Courses, Springfield, Ohio .NET Training Course, Springfield, Ohio .NET Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.