Oracle, MySQL, Cassandra, Hadoop Database Training Classes in Utica, New York

Learn Oracle, MySQL, Cassandra, Hadoop Database in Utica, NewYork and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Oracle, MySQL, Cassandra, Hadoop Database related training offerings in Utica, New York: Oracle, MySQL, Cassandra, Hadoop Database Training

We offer private customized training for groups of 3 or more attendees.

Oracle, MySQL, Cassandra, Hadoop Database Training Catalog

cost: $ 495length: 1 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 1090length: 3 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 1090length: 2 day(s)

Cassandra Classes

Hadoop Classes

cost: $ 1590length: 3 day(s)

Linux Unix Classes

cost: $ 1890length: 3 day(s)

Microsoft Development Classes

MySQL Classes

cost: $ 490length: 1 day(s)
cost: $ 790length: 2 day(s)
cost: $ 1290length: 4 day(s)
cost: $ 1190length: 3 day(s)

Oracle Classes

cost: $ 2090length: 5 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1590length: 4 day(s)
cost: $ 790length: 2 day(s)
cost: $ 690length: 1 day(s)
cost: $ 2800length: 5 day(s)
cost: $ 1690length: 3 day(s)
cost: $ 2600length: 5 day(s)

SQL Server Classes

cost: $ 1290length: 3 day(s)
cost: $ 890length: 2 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 4 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2190length: 5 day(s)
cost: $ 1290length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

The original article was posted by Michael Veksler on Quora

A very well known fact is that code is written once, but it is read many times. This means that a good developer, in any language, writes understandable code. Writing understandable code is not always easy, and takes practice. The difficult part, is that you read what you have just written and it makes perfect sense to you, but a year later you curse the idiot who wrote that code, without realizing it was you.

The best way to learn how to write readable code, is to collaborate with others. Other people will spot badly written code, faster than the author. There are plenty of open source projects, which you can start working on and learn from more experienced programmers.

Readability is a tricky thing, and involves several aspects:

  1. Never surprise the reader of your code, even if it will be you a year from now. For example, don’t call a function max() when sometimes it returns the minimum().
  2. Be consistent, and use the same conventions throughout your code. Not only the same naming conventions, and the same indentation, but also the same semantics. If, for example, most of your functions return a negative value for failure and a positive for success, then avoid writing functions that return false on failure.
  3. Write short functions, so that they fit your screen. I hate strict rules, since there are always exceptions, but from my experience you can almost always write functions short enough to fit your screen. Throughout my carrier I had only a few cases when writing short function was either impossible, or resulted in much worse code.
  4. Use descriptive names, unless this is one of those standard names, such as i or it in a loop. Don’t make the name too long, on one hand, but don’t make it cryptic on the other.
  5. Define function names by what they do, not by what they are used for or how they are implemented. If you name functions by what they do, then code will be much more readable, and much more reusable.
  6. Avoid global state as much as you can. Global variables, and sometimes attributes in an object, are difficult to reason about. It is difficult to understand why such global state changes, when it does, and requires a lot of debugging.
  7. As Donald Knuth wrote in one of his papers: “Early optimization is the root of all evil”. Meaning, write for readability first, optimize later.
  8. The opposite of the previous rule: if you have an alternative which has similar readability, but lower complexity, use it. Also, if you have a polynomial alternative to your exponential algorithm (when N > 10), you should use that.

Use standard library whenever it makes your code shorter; don’t implement everything yourself. External libraries are more problematic, and are both good and bad. With external libraries, such as boost, you can save a lot of work. You should really learn boost, with the added benefit that the c++ standard gets more and more form boost. The negative with boost is that it changes over time, and code that works today may break tomorrow. Also, if you try to combine a third-party library, which uses a specific version of boost, it may break with your current version of boost. This does not happen often, but it may.

Don’t blindly use C++ standard library without understanding what it does - learn it. You look at std::vector::push_back() documentation at it tells you that its complexity is O(1), amortized. What does that mean? How does it work? What are benefits and what are the costs? Same with std::map, and with std::unordered_map. Knowing the difference between these two maps, you’d know when to use each one of them.

Never call new or delete directly, use std::make_unique and [cost c++]std::make_shared[/code] instead. Try to implement usique_ptr, shared_ptr, weak_ptr yourself, in order to understand what they actually do. People do dumb things with these types, since they don’t understand what these pointers are.

Every time you look at a new class or function, in boost or in std, ask yourself “why is it done this way and not another?”. It will help you understand trade-offs in software development, and will help you use the right tool for your job. Don’t be afraid to peek into the source of boost and the std, and try to understand how it works. It will not be easy, at first, but you will learn a lot.

Know what complexity is, and how to calculate it. Avoid exponential and cubic complexity, unless you know your N is very low, and will always stay low.

Learn data-structures and algorithms, and know them. Many people think that it is simply a wasted time, since all data-structures are implemented in standard libraries, but this is not as simple as that. By understanding data-structures, you’d find it easier to pick the right library. Also, believe it or now, after 25 years since I learned data-structures, I still use this knowledge. Half a year ago I had to implemented a hash table, since I needed fast serialization capability which the available libraries did not provide. Now I am writing some sort of interval-btree, since using std::map, for the same purpose, turned up to be very very slow, and the performance bottleneck of my code.

Notice that you can’t just find interval-btree on Wikipedia, or stack-overflow. The closest thing you can find is Interval tree, but it has some performance drawbacks. So how can you implement an interval-btree, unless you know what a btree is and what an interval-tree is? I strongly suggest, again, that you learn and remember data-structures.

These are the most important things, which will make you a better programmer. The other things will follow.

F# is excellent for specialties such as scientific computing and data analysis. It is an excellent choice for enterprise development as well. There are a few great reasons why you should consider using F# for your next project.

Concise

F# is not cluttered up with coding noise;  no pesky semicolons, curly brackets, and so on. You almost never have to specify the kind of object you're referencing because of its powerful type inference system. It usually takes fewer lines of code to solve the same issue.

Convenient

Common programming tasks are much easier in F#. These include generating and using state machines, comparison and equality, list processing, as well as complex type definitions. It is very easy to generate powerful and reusable code because functions are first class objects. This is done by creating functions that have other functions as parameters or that combine existing functions to generate a new functionality.

Correctness

F# has a strong type system, and, therefore, prevents many common errors such as null reference exceptions. Valuables are immutable by default which, too, prevents a huge class of errors. You can also encode business logic by utilizing the type system. When done correctly, it is impossible to mix up units of measure or to write incorrect code thereby decresing the need of unit tests.

Concurrency

F# has number of built-in libraries. These libraries help when more than one thing at a time is occurring. Parallelism and asynchronous programming are very simple. There is also a built-in actor model as well as excellent support for event handling and functional reactive programming. Sharing state and avoiding locks are much easier because data structures are immutable by default.

Completeness

F# also supports other styles that are not 100 percent pure. This makes it easier to interact with the non-pure world of databases, websites, other applications, and so on. It is actually designed as a hybrid functional/OO language. F# is also part of the .NET ecosystem. This gives you seamless access to all the third party .NET tools and libraries. It operates on most platforms. These platforms include Linux and smartphones via mono. Visual Studio is integrates with F# as well. This means you get many plug-ins for unit tests, a debugger, a IDE with IntelliSense support, other development tasks. You can use MonoDevelop IDE on Linux.

Related:

F# - Marching Towards Top 10 Programming Languages

What Are the Advantages of Python Over Ruby?

Top 10 Programming Languages Expected To Be In Demand in 2014

It is rather unfortunate that in the ever changing and rapidly improving world of technology, we hardly remember the geniuses who through their inventions laid the foundation for many of the conveniences and features we now enjoy in our favorite communication devices.

This article is a tribute to the ten people who made these discoveries and an attempt to bring their achievements into the limelight.

1.      Marty Cooper

Did you know that Cooper was the first to file the patent in 1973, when he was already working for Motorola for the “radio telephone system”. The Cooper’s Law is his brainchild and to think that he himself was inspired to come out with the patent was Star Trek and its Captain Kirk is indeed revealing.

2. Mike Lazardidis
 

The earning potential of a software developer largely depends on their knowledge, their chosen area of expertise, experience and flexibility to relocate if necessary.  In the ever changing landscape of Information Technology, many argue that the way to make more money is to specialize in a technology that fewer people are using.  As an example, there are tons of Java programmers out there, but nowhere near enough in lesser known languages such as Perl or Python.  However, there are plenty of opportunities for folks who are willing to burn the midnight oil to gain skills in these niche disciplines.

 

Because the Information Technology Industry is a rapidly evolving entity, gunning for the "Next Big Thing" is constantly an arm’s length away.  For this reason, developers looking to get requisite knowledge to successfully compete can, for the most part, expect to resign their weekends for the LOVE of code and studying.   And, it’s fair to say that a stick-to-itiveness to teach yourself how to code can be more important than any degree when job prospecting.  Sam Nichols, a mobile developer at SmugMug, puts it this way: “Build a table, build a computer, build a water gun, build a beer bong, build things that will take a week and build things that need to be done in 40 minutes before the party. Making stuff is what this field is all about and getting experience building things, especially with others, especially when it breaks and fails along the way can help with perspective and resiliency.”

Software developers already skilled at writing code are readily able to translate that knowledge to web development. The fact that the information technology sector has shifted largely to web-based infrastructure and software application as system (SaaS) database and operating system capabilities, means that software developers have a wide variety of opportunity in the web development segment of the consulting and job market.

If you are a software developer seeking to increase your earning potential, gaining expertise in  Web development  enhances your ability to attract new opportunities. The more creative a software developer, the far better chance they will have at benefitting from current market demand for new technologies and software innovation. Customization is hot right now, and software developers involved in the creation of updates and unique features to SaaS can add extra value to their portfolio with very little time and effort involved.

 In order for software developers to stay abreast of their field, continuing education and is required to ensure that technical skills are up-to-date. Gaining knowledge in design of computer applications is one of the main objectives in the development and planning of software products.
Once adequate knowledge has been acquired, many software developers can use those insights to develop custom software for a client as a consultant.

Tech Life in New York

City The Big Apple is home of two of the world?s largest stock market exchanges, the New York Stock Exchange and NASDAQ. As a leading business center in the United States, New York has more Fortune 500 headquartered companies than any other city. Technology is blossoming in the Big Apple as major internet conglomerates like Google move their offices into ?telecom hotels? such as the 311,000 square feet office space downtown. As in any other city there are pros and cons of living in New York City. For instance, there is so much to do, it?s easy to get around with the transit system, it?s safe, convenient, and has plenty of job opportunities. On the other hand, it can be overwhelmingly expensive, overcrowded, a bit impersonal and fast paced. New Yorkers enjoy Central Park, multi cultural activities and food, theatre, film festivals, farmers markets, fashion and anything else they could possibly think of...it?s all there.
The beautiful thing about learning is that nobody can take it away from you. B.B King
other Learning Options
Software developers near Utica have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in New York that offer opportunities for Oracle, MySQL, Cassandra, Hadoop Database developers
Company Name City Industry Secondary Industry
NYSE Euronext, Inc. New York Financial Services Securities Agents and Brokers
Anderson Instrument Company Inc. Fultonville Manufacturing Tools, Hardware and Light Machinery
News Corporation New York Media and Entertainment Radio and Television Broadcasting
Philip Morris International Inc New York Manufacturing Manufacturing Other
Loews Corporation New York Travel, Recreation and Leisure Hotels, Motels and Lodging
The Guardian Life Insurance Company of America New York Financial Services Insurance and Risk Management
Jarden Corporation Rye Manufacturing Manufacturing Other
Ralph Lauren Corporation New York Retail Clothing and Shoes Stores
Icahn Enterprises, LP New York Financial Services Investment Banking and Venture Capital
Viacom Inc. New York Media and Entertainment Media and Entertainment Other
Omnicom Group Inc. New York Business Services Advertising, Marketing and PR
Henry Schein, Inc. Melville Healthcare, Pharmaceuticals and Biotech Medical Supplies and Equipment
Pfizer Incorporated New York Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
Eastman Kodak Company Rochester Computers and Electronics Audio, Video and Photography
Assurant Inc. New York Business Services Data and Records Management
PepsiCo, Inc. Purchase Manufacturing Nonalcoholic Beverages
Foot Locker, Inc. New York Retail Department Stores
Barnes and Noble, Inc. New York Retail Sporting Goods, Hobby, Book, and Music Stores
Alcoa New York Manufacturing Metals Manufacturing
The Estee Lauder Companies Inc. New York Healthcare, Pharmaceuticals and Biotech Personal Health Care Products
Avon Products, Inc. New York Healthcare, Pharmaceuticals and Biotech Personal Health Care Products
The Bank of New York Mellon Corporation New York Financial Services Banks
Marsh and McLennan Companies New York Financial Services Insurance and Risk Management
Corning Incorporated Corning Manufacturing Concrete, Glass, and Building Materials
CBS Corporation New York Media and Entertainment Radio and Television Broadcasting
Bristol Myers Squibb Company New York Healthcare, Pharmaceuticals and Biotech Biotechnology
Citigroup Incorporated New York Financial Services Banks
Goldman Sachs New York Financial Services Personal Financial Planning and Private Banking
American International Group (AIG) New York Financial Services Insurance and Risk Management
Interpublic Group of Companies, Inc. New York Business Services Advertising, Marketing and PR
BlackRock, Inc. New York Financial Services Securities Agents and Brokers
MetLife Inc. New York Financial Services Insurance and Risk Management
Consolidated Edison Company Of New York, Inc. New York Energy and Utilities Gas and Electric Utilities
Time Warner Cable New York Telecommunications Cable Television Providers
Morgan Stanley New York Financial Services Investment Banking and Venture Capital
American Express Company New York Financial Services Credit Cards and Related Services
International Business Machines Corporation Armonk Computers and Electronics Computers, Parts and Repair
TIAA-CREF New York Financial Services Securities Agents and Brokers
JPMorgan Chase and Co. New York Financial Services Investment Banking and Venture Capital
The McGraw-Hill Companies, Inc. New York Media and Entertainment Newspapers, Books and Periodicals
L-3 Communications Inc. New York Manufacturing Aerospace and Defense
Colgate-Palmolive Company New York Consumer Services Personal Care
New York Life Insurance Company New York Financial Services Insurance and Risk Management
Time Warner Inc. New York Media and Entertainment Media and Entertainment Other
Cablevision Systems Corp. Bethpage Media and Entertainment Radio and Television Broadcasting
CA Technologies, Inc. Islandia Software and Internet Software
Verizon Communications Inc. New York Telecommunications Telephone Service Providers and Carriers
Hess Corporation New York Energy and Utilities Gasoline and Oil Refineries

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in New York since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Oracle, MySQL, Cassandra, Hadoop Database programming
  • Get your questions answered by easy to follow, organized Oracle, MySQL, Cassandra, Hadoop Database experts
  • Get up to speed with vital Oracle, MySQL, Cassandra, Hadoop Database programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Utica, New York Oracle, MySQL, Cassandra, Hadoop Database Training , Utica, New York Oracle, MySQL, Cassandra, Hadoop Database Training Classes, Utica, New York Oracle, MySQL, Cassandra, Hadoop Database Training Courses, Utica, New York Oracle, MySQL, Cassandra, Hadoop Database Training Course, Utica, New York Oracle, MySQL, Cassandra, Hadoop Database Training Seminar
training locations
New York cities where we offer Oracle, MySQL, Cassandra, Hadoop Database Training Classes

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.