AI Training Classes in Laredo, Texas

Learn AI in Laredo, Texas and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current AI related training offerings in Laredo, Texas: AI Training

We offer private customized training for groups of 3 or more attendees.

AI Training Catalog

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

Businesses “Going Green” is so commonplace now it’s more than just an encouraging a trend; it’s become expected of companies big and small. In fact, consumers frequently place more of an obligation on companies to go green than they do themselves. The last few years—the infancy of what may turn out to be a green revolution—have really proven that there are many ways to go green, and that some of these ways are much more financially sound than others. But rather than providing a cut and dry list of green options and their pros and cons, I’d like to take a look at the bigger picture incentives for businesses going green and how consumers are responding.

 

What does it mean to be green?

 

It is said that spoken languages shape thoughts by their inclusion and exclusion of concepts, and by structuring them in different ways. Similarly, programming languages shape solutions by making some tasks easier and others less aesthetic. Using F# instead of C# reshapes software projects in ways that prefer certain development styles and outcomes, changing what is possible and how it is achieved.

F# is a functional language from Microsoft's research division. While once relegated to the land of impractical academia, the principles espoused by functional programming are beginning to garner mainstream appeal.

As its name implies, functions are first-class citizens in functional programming. Blocks of code can be stored in variables, passed to other functions, and infinitely composed into higher-order functions, encouraging cleaner abstractions and easier testing. While it has long been possible to store and pass code, F#'s clean syntax for higher-order functions encourages them as a solution to any problem seeking an abstraction.

F# also encourages immutability. Instead of maintaining state in variables, functional programming with F# models programs as a series of functions converting inputs to outputs. While this introduces complications for those used to imperative styles, the benefits of immutability mesh well with many current developments best practices.

For instance, if functions are pure, handling only immutable data and exhibiting no side effects, then testing is vastly simplified. It is very easy to test that a specific block of code always returns the same value given the same inputs, and by modeling code as a series of immutable functions, it becomes possible to gain a deep and highly precise set of guarantees that software will behave exactly as written.

Further, if execution flow is exclusively a matter of routing function inputs to outputs, then concurrency is vastly simplified. By shifting away from mutable state to immutable functions, the need for locks and semaphores is vastly reduced if not entirely eliminated, and multi-processor development is almost effortless in many cases.

Type inference is another powerful feature of many functional languages. It is often unnecessary to specify argument and return types, since any modern compiler can infer them automatically. F# brings this feature to most areas of the language, making F# feel less like a statically-typed language and more like Ruby or Python. F# also eliminates noise like braces, explicit returns, and other bits of ceremony that make languages feel cumbersome.

Functional programming with F# makes it possible to write concise, easily testable code that is simpler to parallelize and reason about. However, strict functional styles often require imperative developers to learn new ways of thinking that are not as intuitive. Fortunately, F# makes it possible to incrementally change habits over time. Thanks to its hybrid object-oriented and functional nature, and its clean interoperability with the .net platform, F# developers can gradually shift to a more functional mindset while still using the algorithms and libraries with which they are most familiar.

 

Related F# Resources:

F# Programming Essentials Training

Python and Ruby, each with roots going back into the 1990s, are two of the most popular interpreted programming languages today. Ruby is most widely known as the language in which the ubiquitous Ruby on Rails web application framework is written, but it also has legions of fans that use it for things that have nothing to do with the web. Python is a big hit in the numerical and scientific computing communities at the present time, rapidly displacing such longtime stalwarts as R when it comes to these applications. It too, however, is also put to a myriad of other uses, and the two languages probably vie for the title when it comes to how flexible their users find them.

A Matter of Personality...


That isn't to say that there aren't some major, immediately noticeable, differences between the two programming tongues. Ruby is famous for its flexibility and eagerness to please; it is seen by many as a cleaned-up continuation of Perl's "Do What I Mean" philosophy, whereby the interpreter does its best to figure out the meaning of evening non-canonical syntactic constructs. In fact, the language's creator, Yukihiro Matsumoto, chose his brainchild's name in homage to that earlier language's gemstone-inspired moniker.

Python, on the other hand, takes a very different tact. In a famous Python Enhancement Proposal called "The Zen of Python," longtime Pythonista Tim Peters declared it to be preferable that there should only be a single obvious way to do anything. Python enthusiasts and programmers, then, generally prize unanimity of style over syntactic flexibility compared to those who choose Ruby, and this shows in the code they create. Even Python's whitespace-sensitive parsing has a feel of lending clarity through syntactical enforcement that is very much at odds with the much fuzzier style of typical Ruby code.

For example, Python's much-admired list comprehension feature serves as the most obvious way to build up certain kinds of lists according to initial conditions:

a = [x**3 for x in range(10,20)]
b = [y for y in a if y % 2 == 0]

first builds up a list of the cubes of all of the numbers between 10 and 19 (yes, 19), assigning the result to 'a'. A second list of those elements in 'a' which are even is then stored in 'b'. One natural way to do this in Ruby is probably:

a = (10..19).map {|x| x ** 3}
b = a.select {|y| y.even?}

but there are a number of obvious alternatives, such as:

a = (10..19).collect do |x|
x ** 3
end

b = a.find_all do |y|
y % 2 == 0
end

It tends to be a little easier to come up with equally viable, but syntactically distinct, solutions in Ruby compared to Python, even for relatively simple tasks like the above. That is not to say that Ruby is a messy language, either; it is merely that it is somewhat freer and more forgiving than Python is, and many consider Python's relative purity in this regard a real advantage when it comes to writing clear, easily understandable code.

And Somewhat One of Performance

Wondering why Cisco is teaching network engineers Python in addition to their core expertise?
 
Yes, arguably there are many other tools available to use to automate the network without writing any code. It is also true that when code is absolutely necessary, in most companies software developers will write the code for the network engineers. However, networks are getting progressively more sophisticated and the ability for network engineers to keep up with the rate of change, scale of networks, and processing of requirements is becoming more of a challenge with traditional methodologies. 
 
Does that mean that all network engineers have to become programmers in the future? Not completely, but having certain tools in your tool belt may be the deciding factor in new or greater career opportunities. The fact is that current changes in the industry will require Cisco engineers to become proficient in programming, and the most common programming language for this new environment is the Python programming language. Already there are more opportunities for those who can understand programming and can also apply it to traditional networking practices. 
 
Cisco’s current job boards include a search for a Sr. Network Test Engineer and for several Network Consulting Engineers, each with  "competitive knowledge" desired Python and Perl skills. Without a doubt, the most efficient network engineers in the future will be the ones who will be able to script their automated network-related tasks, create their own services directly in the network, and continuously modify their scripts. 
 
Whether you are forced to attend or are genuinely interested in workshops or courses that cover the importance of learning topics related to programmable networks such as Python, the learning curve at the very least will provide you with an understanding of Python scripts and the ability to be able to use them instead of the CLI commands and the copy and paste options commonly used.  Those that plan to cling to their CLI will soon find themselves obsolete.
 
As with anything new, learning a programming language and using new APIs for automation will require engineers to learn and master the skills before deploying widely across their network. The burning question is where to start and which steps to take next? 
 
In How Do I Get Started Learning Network Programmability?  Hank Preston – on the Cisco blog page suggest a three phase approach to diving into network programmability.
 
“Phase 1: Programming Basics
In this first phase you need to build a basic foundation in the programmability skills, topics, and technologies that will be instrumental in being successful in this journey.  This includes learning basic programming skills like variables, operations, conditionals, loops, etc.  And there really is no better language for network engineers to leverage today than Python.  Along with Python, you should explore APIs (particularly REST APIs), data formats like JSON, XML, and YAML. And if you don’t have one already, sign up for a GitHub account and learn how to clone, pull, and push to repos.
 
Phase 2: Platform Topics
Once you have the programming fundamentals squared away (or at least working on squaring them away) the time comes to explore the new platforms of Linux, Docker, and “the Cloud.”  As applications are moving from x86 virtualization to micro services, and now serverless, the networks you build will be extending into these new areas and outside of traditional physical network boxes.  And before you can intelligently design or engineer the networks for those environments, you need to understand how they basically work.  The goal isn’t to become a big bushy beard wearing Unix admin, but rather to become comfortable working in these areas.
 
Phase 3: Networking for Today and Tomorrow
Now you are ready to explore the details of networking in these new environments.  In phase three you will dive deep into Linux, container/Docker, cloud, and micro service networking.  You have built the foundation of knowledge needed to take a hard look at how networking works inside these new environments.  Explore all the new technologies, software, and strategies for implementing and segmenting critical applications in the “cloud native” age and add value to the application projects.”
 
Community resources: 
GitHub’s, PYPL Popularity of Programming Language lists Python as having grown 13.2% in demand in the last 5 years. 
Python in the  June 2018 TIOBE Index ranks as the fourth most popular language behind Java, C and C++. 
 
Despite the learning curve, having Python in your tool belt is without a question a must have tool.

Tech Life in Texas

Austin may be considered the live music capital of the world but the field of technology is becoming the new norm in the The Lone Star State. Home to Dell and Compaq computers, there is a reason why central Texas is often referred to as the Silicon Valley of the south. It’s rated third on the charts of the top computer places in the United States with a social learning and training IT atmosphere. Adding the fact that Austin offers fairly inexpensive living costs for students, software developers may take note as they look to relocate.
A program is never less than 90% complete, and never more than 95% complete. Terry Baker
other Learning Options
Software developers near Laredo have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Texas that offer opportunities for AI developers
Company Name City Industry Secondary Industry
Dr Pepper Snapple Group Plano Manufacturing Nonalcoholic Beverages
Western Refining, Inc. El Paso Energy and Utilities Gasoline and Oil Refineries
Frontier Oil Corporation Dallas Manufacturing Chemicals and Petrochemicals
ConocoPhillips Houston Energy and Utilities Gasoline and Oil Refineries
Dell Inc Round Rock Computers and Electronics Computers, Parts and Repair
Enbridge Energy Partners, L.P. Houston Transportation and Storage Transportation & Storage Other
GameStop Corp. Grapevine Retail Retail Other
Fluor Corporation Irving Business Services Management Consulting
Kimberly-Clark Corporation Irving Manufacturing Paper and Paper Products
Exxon Mobil Corporation Irving Energy and Utilities Gasoline and Oil Refineries
Plains All American Pipeline, L.P. Houston Energy and Utilities Gasoline and Oil Refineries
Cameron International Corporation Houston Energy and Utilities Energy and Utilities Other
Celanese Corporation Irving Manufacturing Chemicals and Petrochemicals
HollyFrontier Corporation Dallas Energy and Utilities Gasoline and Oil Refineries
Kinder Morgan, Inc. Houston Energy and Utilities Gas and Electric Utilities
Marathon Oil Corporation Houston Energy and Utilities Gasoline and Oil Refineries
United Services Automobile Association San Antonio Financial Services Personal Financial Planning and Private Banking
J. C. Penney Company, Inc. Plano Retail Department Stores
Energy Transfer Partners, L.P. Dallas Energy and Utilities Energy and Utilities Other
Atmos Energy Corporation Dallas Energy and Utilities Alternative Energy Sources
National Oilwell Varco Inc. Houston Manufacturing Manufacturing Other
Tesoro Corporation San Antonio Manufacturing Chemicals and Petrochemicals
Halliburton Company Houston Energy and Utilities Energy and Utilities Other
Flowserve Corporation Irving Manufacturing Tools, Hardware and Light Machinery
Commercial Metals Company Irving Manufacturing Metals Manufacturing
EOG Resources, Inc. Houston Energy and Utilities Gasoline and Oil Refineries
Whole Foods Market, Inc. Austin Retail Grocery and Specialty Food Stores
Waste Management, Inc. Houston Energy and Utilities Waste Management and Recycling
CenterPoint Energy, Inc. Houston Energy and Utilities Gas and Electric Utilities
Valero Energy Corporation San Antonio Manufacturing Chemicals and Petrochemicals
FMC Technologies, Inc. Houston Energy and Utilities Alternative Energy Sources
Calpine Corporation Houston Energy and Utilities Gas and Electric Utilities
Texas Instruments Incorporated Dallas Computers and Electronics Semiconductor and Microchip Manufacturing
SYSCO Corporation Houston Wholesale and Distribution Grocery and Food Wholesalers
BNSF Railway Company Fort Worth Transportation and Storage Freight Hauling (Rail and Truck)
Affiliated Computer Services, Incorporated (ACS), a Xerox Company Dallas Software and Internet E-commerce and Internet Businesses
Tenet Healthcare Corporation Dallas Healthcare, Pharmaceuticals and Biotech Hospitals
XTO Energy Inc. Fort Worth Energy and Utilities Gasoline and Oil Refineries
Group 1 Automotive Houston Retail Automobile Dealers
ATandT Dallas Telecommunications Telephone Service Providers and Carriers
Anadarko Petroleum Corporation Spring Energy and Utilities Gasoline and Oil Refineries
Apache Corporation Houston Energy and Utilities Gasoline and Oil Refineries
Dean Foods Company Dallas Manufacturing Food and Dairy Product Manufacturing and Packaging
American Airlines Fort Worth Travel, Recreation and Leisure Passenger Airlines
Baker Hughes Incorporated Houston Energy and Utilities Gasoline and Oil Refineries
Continental Airlines, Inc. Houston Travel, Recreation and Leisure Passenger Airlines
RadioShack Corporation Fort Worth Computers and Electronics Consumer Electronics, Parts and Repair
KBR, Inc. Houston Government International Bodies and Organizations
Spectra Energy Partners, L.P. Houston Energy and Utilities Gas and Electric Utilities
Energy Future Holdings Dallas Energy and Utilities Energy and Utilities Other
Southwest Airlines Corporation Dallas Transportation and Storage Air Couriers and Cargo Services

training details locations, tags and why hsg

the hartmann software group advantage
A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Texas since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about AI programming
  • Get your questions answered by easy to follow, organized AI experts
  • Get up to speed with vital AI programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Laredo, Texas AI Training , Laredo, Texas AI Training Classes, Laredo, Texas AI Training Courses, Laredo, Texas AI Training Course, Laredo, Texas AI Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.