Linux Unix Training Classes in Peabody, Massachusetts

Learn Linux Unix in Peabody, Massachusetts and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Linux Unix related training offerings in Peabody, Massachusetts: Linux Unix Training

We offer private customized training for groups of 3 or more attendees.
Peabody  Upcoming Instructor Led Online and Public Linux Unix Training Classes
Enterprise Linux System Administration Training/Class 14 April, 2025 - 18 April, 2025 $2190
HSG Training Center instructor led online
Peabody, Massachusetts 01960
Hartmann Software Group Training Registration
Linux Fundaments GL120 Training/Class 10 February, 2025 - 14 February, 2025 $2090
HSG Training Center instructor led online
Peabody, Massachusetts 01960
Hartmann Software Group Training Registration
LINUX SHELL SCRIPTING Training/Class 30 June, 2025 - 1 July, 2025 $990
HSG Training Center instructor led online
Peabody, Massachusetts 01960
Hartmann Software Group Training Registration
OpenShift Fundamentals Training/Class 28 April, 2025 - 30 April, 2025 $2090
HSG Training Center instructor led online
Peabody, Massachusetts 01960
Hartmann Software Group Training Registration
RED HAT ENTERPRISE LINUX AUTOMATION WITH ANSIBLE Training/Class 18 February, 2025 - 21 February, 2025 $2735
HSG Training Center instructor led online
Peabody, Massachusetts 01960
Hartmann Software Group Training Registration
RED HAT ENTERPRISE LINUX SYSTEMS ADMIN I Training/Class 24 March, 2025 - 28 March, 2025 $2090
HSG Training Center instructor led online
Peabody, Massachusetts 01960
Hartmann Software Group Training Registration
RED HAT ENTERPRISE LINUX SYSTEMS ADMIN II Training/Class 18 August, 2025 - 21 August, 2025 $1890
HSG Training Center instructor led online
Peabody, Massachusetts 01960
Hartmann Software Group Training Registration
RHCSA EXAM PREP Training/Class 16 June, 2025 - 20 June, 2025 $2090
HSG Training Center instructor led online
Peabody, Massachusetts 01960
Hartmann Software Group Training Registration
Docker Training/Class 3 February, 2025 - 5 February, 2025 $1690
HSG Training Center instructor led online
Peabody, Massachusetts 01960
Hartmann Software Group Training Registration
DOCKER WITH KUBERNETES ADMINISTRATION Training/Class 17 March, 2025 - 21 March, 2025 $2490
HSG Training Center instructor led online
Peabody, Massachusetts 01960
Hartmann Software Group Training Registration

View all Scheduled Linux Unix Training Classes

Linux Unix Training Catalog

cost: $ 1390length: 4 day(s)
cost: $ 1390length: 4 day(s)
cost: $ 1990length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2800length: 4 day(s)
cost: $ 2490length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2290length: 4 day(s)
cost: $ 2190length: 5 day(s)
cost: $ 1690length: 4 day(s)
cost: $ 1890length: 3 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 1290length: 3 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 2490length: 4 day(s)
cost: $ 1290length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1090length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2400length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2490length: 4 day(s)
cost: $ 990length: 2 day(s)
cost: $ 2290length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 2400length: 4 day(s)
cost: $ 2090length: 3 day(s)
cost: $ 2090length: 3 day(s)
cost: $ 1790length: 4 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1690length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2590length: 3 day(s)
cost: $ 1690length: 5 day(s)
cost: $ 1690length: 5 day(s)
cost: $ 1690length: 5 day(s)
cost: $ 1390length: 4 day(s)

DevOps Classes

cost: $ 1690length: 3 day(s)
cost: $ 1690length: 3 day(s)

Foundations of Web Design & Web Authoring Classes

cost: $ 1290length: 3 day(s)
cost: $ 790length: 2 day(s)
cost: $ 1190length: 3 day(s)

Java Programming Classes

cost: $ 1390length: 3 day(s)
cost: $ 1390length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

It is said that spoken languages shape thoughts by their inclusion and exclusion of concepts, and by structuring them in different ways. Similarly, programming languages shape solutions by making some tasks easier and others less aesthetic. Using F# instead of C# reshapes software projects in ways that prefer certain development styles and outcomes, changing what is possible and how it is achieved.

F# is a functional language from Microsoft's research division. While once relegated to the land of impractical academia, the principles espoused by functional programming are beginning to garner mainstream appeal.

As its name implies, functions are first-class citizens in functional programming. Blocks of code can be stored in variables, passed to other functions, and infinitely composed into higher-order functions, encouraging cleaner abstractions and easier testing. While it has long been possible to store and pass code, F#'s clean syntax for higher-order functions encourages them as a solution to any problem seeking an abstraction.

F# also encourages immutability. Instead of maintaining state in variables, functional programming with F# models programs as a series of functions converting inputs to outputs. While this introduces complications for those used to imperative styles, the benefits of immutability mesh well with many current developments best practices.

For instance, if functions are pure, handling only immutable data and exhibiting no side effects, then testing is vastly simplified. It is very easy to test that a specific block of code always returns the same value given the same inputs, and by modeling code as a series of immutable functions, it becomes possible to gain a deep and highly precise set of guarantees that software will behave exactly as written.

Further, if execution flow is exclusively a matter of routing function inputs to outputs, then concurrency is vastly simplified. By shifting away from mutable state to immutable functions, the need for locks and semaphores is vastly reduced if not entirely eliminated, and multi-processor development is almost effortless in many cases.

Type inference is another powerful feature of many functional languages. It is often unnecessary to specify argument and return types, since any modern compiler can infer them automatically. F# brings this feature to most areas of the language, making F# feel less like a statically-typed language and more like Ruby or Python. F# also eliminates noise like braces, explicit returns, and other bits of ceremony that make languages feel cumbersome.

Functional programming with F# makes it possible to write concise, easily testable code that is simpler to parallelize and reason about. However, strict functional styles often require imperative developers to learn new ways of thinking that are not as intuitive. Fortunately, F# makes it possible to incrementally change habits over time. Thanks to its hybrid object-oriented and functional nature, and its clean interoperability with the .net platform, F# developers can gradually shift to a more functional mindset while still using the algorithms and libraries with which they are most familiar.

 

Related F# Resources:

F# Programming Essentials Training

Back in the late 90's, there were a number of computer scienctists claiming to know java in hopes of landing a job for $80k+/year.  In fact, I know a woman you did just that:  land a project management position with a large telecom and have no experience whatsoever.  I guess the company figured that some talent was better than no talent and that, with some time and training, she would be productive.  Like all gravey train stories, that one, too, had an end.  After only a year, she was given a pink slip.

Not only are those days over, job prospects for the IT professional have become considerably more demanding.  Saying you know java today is like saying you know that you have expertise with the computer mouse; that's nice, but what else can you do.   This demand can be attributed to an increase in global competition along with the introduction of a number of varied technologies.   Take .NET, Python, Ruby, Spring, Hibernate ... as an example;  most of them, along with many others, are the backbone of the IT infrastructure of most mid-to-large scale US corporations.  Imagine the difficulty in finding the right mix of experience, knowledge and talent to support, maintain and devlop with such desparate technologies.

Well imagine no more.  According to the IT Hiring Index and Skills Report, seventy percent of CIO’s said it's challenging to find skilled professionals today.  If we add the rapid rate of technological innovation into the mix of factors affecting more businesses now than ever before, it’s understandable that the skill gap is widening.  Consider this as well:  the economic downturn has forced many potential retires to remain in the workforce.  This is detailed in MetLife's annual Study of Employee Benefits which states that“more than one-third of surveyed Baby Boomers (35%) say that as a result of economic conditions they plan to postpone their retirement.”  How then does the corporation hire new, more informed/better educated talent?    Indeed, the IT skills gap is ever widening.

In order to compensate for these skill discrepencies, many firms have resorted to hire the ideal candidates by demanding they possess a christmas wish list of expertise in a variety of different IT disciplines.  It would not be uncommon that such individuals have a strong programming background and are brilliant DBA's.  What about training?  That is certainly a way to diminish the skills gap.

Communication is one of the main objectives that an organization needs to have in place to stay efficient and productive. A breakdown in accurate and efficient communication between departments at any point in the organization can result in conflict or loss of business.  Sadly, the efficiency between different departments in an organization becomes most evident when communication breaks down. As an example, David Grossman reported in “The Cost of Poor Communications” that a survey of 400 companies with 100,000 employees each cited an average loss per company of $62.4 million per year because of inadequate communication to and between employees.

With the dawning of the big-data era and the global competition that Machine Learning algorithms has sparked, it’s more vital than ever for companies of all sizes to prioritize departmental communication mishaps. Perhaps, today, as a result of the many emerging markets, the most essential of these connections are between IT and the business units. CMO’s and CIO’s are becoming natural partners in the sense that CMO’s, in order to capture revenue opportunities, are expected to master not just the art of strategy and creativity but also the science of analytics. The CIO, on the other hand, is accountable for using technical groundwork to enable and accelerate revenue growth. Since business and technology people speak very different languages, there’s a need on both sides to start sharing the vocabulary or understanding of what is expected in order to avoid gridlock.

In the McKinsey article, Getting the CMO and CIO to work as partners, the author speaks to five prerequisite steps that the CMO and the CIO can take in order to be successful in their new roles.

--- Be clear on decision governance
Teams should define when decisions are needed, what must be decided, and who is responsible for making them.

The original article was posted by Michael Veksler on Quora

A very well known fact is that code is written once, but it is read many times. This means that a good developer, in any language, writes understandable code. Writing understandable code is not always easy, and takes practice. The difficult part, is that you read what you have just written and it makes perfect sense to you, but a year later you curse the idiot who wrote that code, without realizing it was you.

The best way to learn how to write readable code, is to collaborate with others. Other people will spot badly written code, faster than the author. There are plenty of open source projects, which you can start working on and learn from more experienced programmers.

Readability is a tricky thing, and involves several aspects:

  1. Never surprise the reader of your code, even if it will be you a year from now. For example, don’t call a function max() when sometimes it returns the minimum().
  2. Be consistent, and use the same conventions throughout your code. Not only the same naming conventions, and the same indentation, but also the same semantics. If, for example, most of your functions return a negative value for failure and a positive for success, then avoid writing functions that return false on failure.
  3. Write short functions, so that they fit your screen. I hate strict rules, since there are always exceptions, but from my experience you can almost always write functions short enough to fit your screen. Throughout my carrier I had only a few cases when writing short function was either impossible, or resulted in much worse code.
  4. Use descriptive names, unless this is one of those standard names, such as i or it in a loop. Don’t make the name too long, on one hand, but don’t make it cryptic on the other.
  5. Define function names by what they do, not by what they are used for or how they are implemented. If you name functions by what they do, then code will be much more readable, and much more reusable.
  6. Avoid global state as much as you can. Global variables, and sometimes attributes in an object, are difficult to reason about. It is difficult to understand why such global state changes, when it does, and requires a lot of debugging.
  7. As Donald Knuth wrote in one of his papers: “Early optimization is the root of all evil”. Meaning, write for readability first, optimize later.
  8. The opposite of the previous rule: if you have an alternative which has similar readability, but lower complexity, use it. Also, if you have a polynomial alternative to your exponential algorithm (when N > 10), you should use that.

Use standard library whenever it makes your code shorter; don’t implement everything yourself. External libraries are more problematic, and are both good and bad. With external libraries, such as boost, you can save a lot of work. You should really learn boost, with the added benefit that the c++ standard gets more and more form boost. The negative with boost is that it changes over time, and code that works today may break tomorrow. Also, if you try to combine a third-party library, which uses a specific version of boost, it may break with your current version of boost. This does not happen often, but it may.

Don’t blindly use C++ standard library without understanding what it does - learn it. You look at std::vector::push_back() documentation at it tells you that its complexity is O(1), amortized. What does that mean? How does it work? What are benefits and what are the costs? Same with std::map, and with std::unordered_map. Knowing the difference between these two maps, you’d know when to use each one of them.

Never call new or delete directly, use std::make_unique and [cost c++]std::make_shared[/code] instead. Try to implement usique_ptr, shared_ptr, weak_ptr yourself, in order to understand what they actually do. People do dumb things with these types, since they don’t understand what these pointers are.

Every time you look at a new class or function, in boost or in std, ask yourself “why is it done this way and not another?”. It will help you understand trade-offs in software development, and will help you use the right tool for your job. Don’t be afraid to peek into the source of boost and the std, and try to understand how it works. It will not be easy, at first, but you will learn a lot.

Know what complexity is, and how to calculate it. Avoid exponential and cubic complexity, unless you know your N is very low, and will always stay low.

Learn data-structures and algorithms, and know them. Many people think that it is simply a wasted time, since all data-structures are implemented in standard libraries, but this is not as simple as that. By understanding data-structures, you’d find it easier to pick the right library. Also, believe it or now, after 25 years since I learned data-structures, I still use this knowledge. Half a year ago I had to implemented a hash table, since I needed fast serialization capability which the available libraries did not provide. Now I am writing some sort of interval-btree, since using std::map, for the same purpose, turned up to be very very slow, and the performance bottleneck of my code.

Notice that you can’t just find interval-btree on Wikipedia, or stack-overflow. The closest thing you can find is Interval tree, but it has some performance drawbacks. So how can you implement an interval-btree, unless you know what a btree is and what an interval-tree is? I strongly suggest, again, that you learn and remember data-structures.

These are the most important things, which will make you a better programmer. The other things will follow.

Tech Life in Massachusetts

It’s no wonder that Massachusetts is a hub of major activity in information technology with a collection of 121 institutions for higher education. In 2007 Mass. impressively scored the highest of all the states in math on the National Assessments of Educational Progress. Some fun facts about Massachusest: - The first U.S.Postal zip code in Massachusetts is 01001 at Agawam. - The Boston University Bridge on Commonwealth Avenue in Boston is the only place in the world where a boat can sail under a train driving under a car driving under an airplane.
The sooner you start to code, the longer the program will take. Roy Carlson
other Learning Options
Software developers near Peabody have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Massachusetts that offer opportunities for Linux Unix developers
Company Name City Industry Secondary Industry
Cabot Corporation Boston Telecommunications Telephone Service Providers and Carriers
LPL Financial Boston Financial Services Personal Financial Planning and Private Banking
NSTAR Gas and Electric Company Westwood Energy and Utilities Gas and Electric Utilities
Cabot Corporation Boston Manufacturing Plastics and Rubber Manufacturing
BJ's Wholesale Club, Inc. Westborough Retail Department Stores
American Tower Corporation Boston Telecommunications Telecommunications Equipment and Accessories
Hologic, Inc. Bedford Healthcare, Pharmaceuticals and Biotech Medical Devices
Global Partners LP Waltham Retail Gasoline Stations
Northeast Utilities Boston Energy and Utilities Gas and Electric Utilities
Liberty Mutual Holding Company Boston Financial Services Insurance and Risk Management
Staples Inc. Framingham Computers and Electronics Office Machinery and Equipment
Thermo Fisher Scientific Inc. Waltham Healthcare, Pharmaceuticals and Biotech Medical Devices
Hanover Insurance Group, Inc. Worcester Financial Services Insurance and Risk Management
The TJX Companies, Inc. Framingham Retail Department Stores
Iron Mountain, Inc. Boston Software and Internet Data Analytics, Management and Storage
Massachusetts Mutual Financial Group Springfield Financial Services Insurance and Risk Management
Beacon Roofing Supply, Inc. Peabody Manufacturing Concrete, Glass, and Building Materials
Raytheon Company Waltham Software and Internet Software
Analog Devices, Inc. Norwood Computers and Electronics Consumer Electronics, Parts and Repair
Biogen Idec Inc. Weston Healthcare, Pharmaceuticals and Biotech Biotechnology
Boston Scientific Corporation Natick Healthcare, Pharmaceuticals and Biotech Medical Supplies and Equipment
PerkinElmer, Inc. Waltham Computers and Electronics Instruments and Controls
State Street Corporation Boston Financial Services Trust, Fiduciary, and Custody Activities
EMC Corporation Hopkinton Computers and Electronics Networking Equipment and Systems

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Massachusetts since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Linux Unix programming
  • Get your questions answered by easy to follow, organized Linux Unix experts
  • Get up to speed with vital Linux Unix programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Peabody, Massachusetts Linux Unix Training , Peabody, Massachusetts Linux Unix Training Classes, Peabody, Massachusetts Linux Unix Training Courses, Peabody, Massachusetts Linux Unix Training Course, Peabody, Massachusetts Linux Unix Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.