Oracle, MySQL, Cassandra, Hadoop Database Training Classes in Reading, Pennsylvania

Learn Oracle, MySQL, Cassandra, Hadoop Database in Reading, Pennsylvania and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Oracle, MySQL, Cassandra, Hadoop Database related training offerings in Reading, Pennsylvania: Oracle, MySQL, Cassandra, Hadoop Database Training

We offer private customized training for groups of 3 or more attendees.

Oracle, MySQL, Cassandra, Hadoop Database Training Catalog

cost: $ 495length: 1 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 1090length: 3 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 1090length: 2 day(s)

Cassandra Classes

Hadoop Classes

cost: $ 1590length: 3 day(s)

Linux Unix Classes

cost: $ 1890length: 3 day(s)

Microsoft Development Classes

MySQL Classes

cost: $ 490length: 1 day(s)
cost: $ 790length: 2 day(s)
cost: $ 1290length: 4 day(s)
cost: $ 1190length: 3 day(s)

Oracle Classes

cost: $ 2090length: 5 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1590length: 4 day(s)
cost: $ 790length: 2 day(s)
cost: $ 690length: 1 day(s)
cost: $ 2800length: 5 day(s)
cost: $ 1690length: 3 day(s)
cost: $ 2600length: 5 day(s)

SQL Server Classes

cost: $ 1290length: 3 day(s)
cost: $ 890length: 2 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 4 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2190length: 5 day(s)
cost: $ 1290length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

Being treated like a twelve year old at work by a Tasmanian-devil-manager and not sure what to do about it? It is simply a well-known fact that no one likes to be micro managed. Not only do they not like to be micro managed, but tend to quit for this very reason. Unfortunately the percentage of people leaving their jobs for this reason is higher that you would imagine. Recently, an employee retention report conducted by TINYpulse, an employee engagement firm, surveyed 400 full-time U.S. employees concluded that, "supervisors can make or break employee retention."

As companies mature, their ability to manage can be significant to their bottom line as employee morale, high staff turnover and the cost of training new employees can easily reduce productivity and consequently client satisfaction.  In many cases, there is a thin line between effective managing and micro managing practices. Most managers avoid micro managing their employees. However, a decent percentage of them have yet to find effective ways to get the most of their co-workers.  They trap themselves by disempowering people's ability to do their work when they hover over them and create an unpleasant working environment. This behavior may come in the form of incessant emailing, everything having to be done a certain way (their way), desk hovering, and a need to control every part of an enterprise, no matter how small.

Superimpose the micro manager into the popular practice of Agile-SCRUM methodology and you can imagine the creative ways they can monitor everything in a team, situation, or place. Although, not always a bad thing, excessive control, can lead to burnout of managers and teams alike.  As predicted, agile project management has become increasingly popular in the last couple of decades in project planning, particularly in software development.  Agile methodology when put into practice, especially in IT, can mean releasing faster functional software than with the traditional development methods. When done right, it enables users to get some of the business benefits of the new software faster as well as enabling the software team to get rapid feedback on the software's scope and direction.

Despite its advantages, most organizations have not been able to go “all agile” at once. Rather, some experiment with their own interpretation of agile when transitioning.  A purist approach for instance, can lead to an unnecessarily high agile project failure, especially for those that rely on tight controls, rigid structures and cost-benefit analysis.  As an example, a premature and rather rapid replacement of traditional development without fully understating the implications of the changeover process or job roles within the project results in failure for many organizations.  

What are the three most important things non-programmers should know about programming?
 
Written by Brian Knapp, credit and reprint CodeCareerGenius
 
 
Since you asked for the three most important things that non-programmers should know about, and I’ve spent most of my career working with more non-programmers than programmers, I have a few interesting things that would help.
 
Number One - It Is Impossible To Accurately Estimate Software Projects
 
No matter what is tried. No matter what tool, agile approach, or magic fairy dust people try to apply to creating software… accurately predicting software project timelines is basically impossible.
 
There are many good reasons for this. Usually, requirements and feature ideas change on a daily/weekly basis. Often it is impossible to know what needs to be done without actually digging into the code itself. Debugging and QA can take an extraordinary amount of time.
 
And worst of all…
 
Project Managers are always pushing for shorter timelines. They largely have no respect for reality. So, at some point they are given estimates just to make them feel better about planning.
 
No matter how much planning and estimation you do, it will be wrong. At best it will be directionally correct +/- 300% of what you estimated. So, a one year project could actually take anywhere between 0 and 5 years, maybe even 10 years.
 
If you think I’m joking, look at how many major ERP projects that go over time and over budget by many years and many hundreds of millions of dollars. Look at the F-35 fighter jet software issues.
 
Or in the small, you can find many cases where a “simple bug fix” can take days when you thought it was hours.
 
All estimates are lies made up to make everyone feel better. I’ve never met a developer or manager who could accurately estimate software projects even as well as the local weatherman(or woman) predicts the weather.
 
Number Two - Productivity Is Unevenly Distributed
 
What if I told you that in the average eight hour work day the majority of the work will get done in a 30 minute timeframe? Sound crazy?
 
Well, for most programmers there is a 30–90 minute window where you are extraordinarily productive. We call this the flow state.
 
Being in the flow state is wonderful and amazing. It often is where the “magic” of building software happens.
 
Getting into flow can be difficult. It’s akin to meditation in that you have to have a period of uninterrupted focus of say 30 minutes to “get in” the flow, but a tiny interruption can pull you right out.
 
Now consider the modern workplace environment. Programmers work in open office environments where they are invited to distract each other constantly.
 
Most people need a 1–2 hour uninterrupted block to get 30–90 minutes of flow.
 
Take the 8 hour day and break it in half with a lunch break, and then pile in a few meetings and all of a sudden you are lucky to get one decent flow state session in place.
 
That is why I say that most of the work that gets done happens in a 30 minute timeframe. The other 7–8 hours are spent being distracted, answering email, going to meetings, hanging around the water cooler, going to the bathroom, and trying to remember what you were working on before all these distractions.
 
Ironically, writers, musicians, and other creative professionals have their own version of this problem and largely work alone and away from other people when they are creating new things.
 
Someday the programming world might catch on, but I doubt it.
 
Even if this became obvious, it doesn’t sit well with most companies to think that programmers would be paid for an 8 hour day and only be cranking out code for a few hours on a good day. Some corporate middle manager would probably get the bright idea to have mandatory flow state training where a guru came in and then there would be a corporate policy from a pointy haired boss mandating that programmers are now required to spend 8 hours a day in flow state and they must fill out forms to track their time and notify their superiors of their flow state activities, otherwise there would be more meetings about the current flow state reports not being filed correctly and that programmers were spending too much time “zoning out” instead of being in flow.
 
Thus, programmers would spent 7–8 hours a day pretending to be in flow state, reporting on their progress, and getting all their work done in 30 minutes of accidental flow state somewhere in the middle of all that flow state reporting.
 
If you think I’m joking about this, I’m not. I promise you this is what would happen to any company of more than 2 employees. (Even the ones run by programmers.)
 
Number Three - It Will Cost 10x What You Think
 
Being a programmer, I get a lot of non-programmers telling me about their brilliant app ideas. Usually they want me to build something for free and are so generous as to pay me up to 5% of the profits for doing 100% of the work.
 
Their ideas are just that good.
 
Now, I gently tell them that I’m not interested in building anything for free.
 
At that point they get angry, but a few ask how much it will cost. I give them a reasonable (and very incorrect) estimate of what it would cost to create the incredibly simple version of their app idea.
 
Let’s say it’s some number like $25,000.
 
They look at me like I’m a lunatic, and so I explain how much it costs to hire a contract programmer and how long it will actually take. For example’s sake let’s say it is $100/hr for 250 hours.
 
To be clear, these are made up numbers and bad estimates (See Number One for details…)
 
In actuality, to build the actual thing they want might cost $250,000, or even $2,500,000 when it’s all said and done.
 
Building software can be incredibly complex and expensive. What most people can’t wrap their head around is the fact that a company like Google, Apple, or Microsoft has spent BILLIONS of dollars to create something that looks so simple to the end user.
 
Somehow, the assumption is that something that looks simple is cheap and fast to build.
 
Building something simple and easy for the end user is time consuming and expensive. Most people just can’t do it.
 
So, the average person with a brilliant app idea thinks it will cost a few hundred or maybe a few thousand dollars to make and it will be done in a weekend is so off the mark it’s not worth considering their ideas.
 
And programmers are too eager to play along with these bad ideas (by making bad estimates and under charging for their time) that this notion is perpetuated to the average non-programmer.
 
So, a good rule of thumb is that software will cost 10 times as much as you think and take 10 times as long to finish.
 
And that leads to a bonus point…
 
BONUS - Software Is Never Done
 
Programmers never complete a software project, they only stop working on it. Software is never done.
 
I’ve worked at many software companies and I’ve never seen a software project “completed”.
 
Sure, software gets released and used. But, it is always changing, being updated, bugs get fixed, and there are always new customer requests for features.
 
Look at your favorite software and you’ll quickly realize how true this is. Facebook, Instagram, Google Search, Google Maps, GMail, iOS, Android, Windows, and now even most video games are never done.
 
There are small armies of developers just trying to keep all the software you use every day stable and bug free. Add on the fact that there are always feature requests, small changes, and new platforms to deal with, it’s a treadmill.
 
So, the only way out of the game is to stop working on software. At that point, the software begins to decay until it is no longer secure or supported.
 
Think about old Windows 3.1 software or maybe old Nintendo Cartridge video games. The current computers and video game consoles don’t even attempt to run that software anymore.
 
You can’t put an old video game in your new Nintendo Switch and have it “just work”. That is what happens when you think software is done.
 
When programmers stop working on software the software starts to die. The code itself is probably fine, but all the other software keeps moving forward until your software is no longer compatible with the current technology.
 
So, those are the four most important things that non-programmers should know about programming. I know you asked for only three, so I hope the bonus was valuable to you as well.

Python and Ruby, each with roots going back into the 1990s, are two of the most popular interpreted programming languages today. Ruby is most widely known as the language in which the ubiquitous Ruby on Rails web application framework is written, but it also has legions of fans that use it for things that have nothing to do with the web. Python is a big hit in the numerical and scientific computing communities at the present time, rapidly displacing such longtime stalwarts as R when it comes to these applications. It too, however, is also put to a myriad of other uses, and the two languages probably vie for the title when it comes to how flexible their users find them.

A Matter of Personality...


That isn't to say that there aren't some major, immediately noticeable, differences between the two programming tongues. Ruby is famous for its flexibility and eagerness to please; it is seen by many as a cleaned-up continuation of Perl's "Do What I Mean" philosophy, whereby the interpreter does its best to figure out the meaning of evening non-canonical syntactic constructs. In fact, the language's creator, Yukihiro Matsumoto, chose his brainchild's name in homage to that earlier language's gemstone-inspired moniker.

Python, on the other hand, takes a very different tact. In a famous Python Enhancement Proposal called "The Zen of Python," longtime Pythonista Tim Peters declared it to be preferable that there should only be a single obvious way to do anything. Python enthusiasts and programmers, then, generally prize unanimity of style over syntactic flexibility compared to those who choose Ruby, and this shows in the code they create. Even Python's whitespace-sensitive parsing has a feel of lending clarity through syntactical enforcement that is very much at odds with the much fuzzier style of typical Ruby code.

For example, Python's much-admired list comprehension feature serves as the most obvious way to build up certain kinds of lists according to initial conditions:

a = [x**3 for x in range(10,20)]
b = [y for y in a if y % 2 == 0]

first builds up a list of the cubes of all of the numbers between 10 and 19 (yes, 19), assigning the result to 'a'. A second list of those elements in 'a' which are even is then stored in 'b'. One natural way to do this in Ruby is probably:

a = (10..19).map {|x| x ** 3}
b = a.select {|y| y.even?}

but there are a number of obvious alternatives, such as:

a = (10..19).collect do |x|
x ** 3
end

b = a.find_all do |y|
y % 2 == 0
end

It tends to be a little easier to come up with equally viable, but syntactically distinct, solutions in Ruby compared to Python, even for relatively simple tasks like the above. That is not to say that Ruby is a messy language, either; it is merely that it is somewhat freer and more forgiving than Python is, and many consider Python's relative purity in this regard a real advantage when it comes to writing clear, easily understandable code.

And Somewhat One of Performance

It is said that spoken languages shape thoughts by their inclusion and exclusion of concepts, and by structuring them in different ways. Similarly, programming languages shape solutions by making some tasks easier and others less aesthetic. Using F# instead of C# reshapes software projects in ways that prefer certain development styles and outcomes, changing what is possible and how it is achieved.

F# is a functional language from Microsoft's research division. While once relegated to the land of impractical academia, the principles espoused by functional programming are beginning to garner mainstream appeal.

As its name implies, functions are first-class citizens in functional programming. Blocks of code can be stored in variables, passed to other functions, and infinitely composed into higher-order functions, encouraging cleaner abstractions and easier testing. While it has long been possible to store and pass code, F#'s clean syntax for higher-order functions encourages them as a solution to any problem seeking an abstraction.

F# also encourages immutability. Instead of maintaining state in variables, functional programming with F# models programs as a series of functions converting inputs to outputs. While this introduces complications for those used to imperative styles, the benefits of immutability mesh well with many current developments best practices.

For instance, if functions are pure, handling only immutable data and exhibiting no side effects, then testing is vastly simplified. It is very easy to test that a specific block of code always returns the same value given the same inputs, and by modeling code as a series of immutable functions, it becomes possible to gain a deep and highly precise set of guarantees that software will behave exactly as written.

Further, if execution flow is exclusively a matter of routing function inputs to outputs, then concurrency is vastly simplified. By shifting away from mutable state to immutable functions, the need for locks and semaphores is vastly reduced if not entirely eliminated, and multi-processor development is almost effortless in many cases.

Type inference is another powerful feature of many functional languages. It is often unnecessary to specify argument and return types, since any modern compiler can infer them automatically. F# brings this feature to most areas of the language, making F# feel less like a statically-typed language and more like Ruby or Python. F# also eliminates noise like braces, explicit returns, and other bits of ceremony that make languages feel cumbersome.

Functional programming with F# makes it possible to write concise, easily testable code that is simpler to parallelize and reason about. However, strict functional styles often require imperative developers to learn new ways of thinking that are not as intuitive. Fortunately, F# makes it possible to incrementally change habits over time. Thanks to its hybrid object-oriented and functional nature, and its clean interoperability with the .net platform, F# developers can gradually shift to a more functional mindset while still using the algorithms and libraries with which they are most familiar.

 

Related F# Resources:

F# Programming Essentials Training

Tech Life in Pennsylvania

The first daily newspaper was published in Philadelphia in 1784. In 1946 Philadelphia became home to the first computer. The State College Area High School was the first school in the country to teach drivers education in 1958. Pennsylvania has an impressive collection of schools, 500 public school districts, thousands of private schools, publicly funded colleges and universities, and over 100 private institutions of higher education. The University of Pennsylvania is also the Commonwealth's only, and geographically the most southern, Ivy League school.
There are some things you learn best in calm, and some in storm.  ~Willa Cather
other Learning Options
Software developers near Reading have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Pennsylvania that offer opportunities for Oracle, MySQL, Cassandra, Hadoop Database developers
Company Name City Industry Secondary Industry
The Hershey Company Hershey Manufacturing Food and Dairy Product Manufacturing and Packaging
Crown Holdings, Inc. Philadelphia Manufacturing Metals Manufacturing
Air Products and Chemicals, Inc. Allentown Manufacturing Chemicals and Petrochemicals
Dick's Sporting Goods Inc Coraopolis Retail Sporting Goods, Hobby, Book, and Music Stores
Mylan Inc. Canonsburg Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
UGI Corporation King Of Prussia Energy and Utilities Gas and Electric Utilities
Aramark Corporation Philadelphia Business Services Business Services Other
United States Steel Corporation Pittsburgh Manufacturing Manufacturing Other
Comcast Corporation Philadelphia Telecommunications Cable Television Providers
PPL Corporation Allentown Energy and Utilities Gas and Electric Utilities
SunGard Wayne Computers and Electronics IT and Network Services and Support
WESCO Distribution, Inc. Pittsburgh Energy and Utilities Energy and Utilities Other
PPG Industries, Inc. Pittsburgh Manufacturing Chemicals and Petrochemicals
Airgas Inc Radnor Manufacturing Chemicals and Petrochemicals
Rite Aid Corporation Camp Hill Retail Grocery and Specialty Food Stores
The PNC Financial Services Group Pittsburgh Financial Services Banks
Universal Health Services, Inc. King Of Prussia Healthcare, Pharmaceuticals and Biotech Hospitals
Erie Insurance Group Erie Financial Services Insurance and Risk Management
Pierrel Research Wayne Healthcare, Pharmaceuticals and Biotech Biotechnology
Unisys Corporation Blue Bell Computers and Electronics IT and Network Services and Support
Lincoln Financial Group Radnor Financial Services Insurance and Risk Management
AmerisourceBergen Wayne Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
Sunoco, Inc. Philadelphia Manufacturing Chemicals and Petrochemicals
CONSOL Energy Inc. Canonsburg Energy and Utilities Gas and Electric Utilities
H. J. Heinz Company Pittsburgh Manufacturing Food and Dairy Product Manufacturing and Packaging

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Pennsylvania since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Oracle, MySQL, Cassandra, Hadoop Database programming
  • Get your questions answered by easy to follow, organized Oracle, MySQL, Cassandra, Hadoop Database experts
  • Get up to speed with vital Oracle, MySQL, Cassandra, Hadoop Database programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Reading, Pennsylvania Oracle, MySQL, Cassandra, Hadoop Database Training , Reading, Pennsylvania Oracle, MySQL, Cassandra, Hadoop Database Training Classes, Reading, Pennsylvania Oracle, MySQL, Cassandra, Hadoop Database Training Courses, Reading, Pennsylvania Oracle, MySQL, Cassandra, Hadoop Database Training Course, Reading, Pennsylvania Oracle, MySQL, Cassandra, Hadoop Database Training Seminar
training locations
Pennsylvania cities where we offer Oracle, MySQL, Cassandra, Hadoop Database Training Classes

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.