Machine Learning Training Classes in Appleton, Wisconsin

Learn Machine Learning in Appleton, Wisconsin and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Machine Learning related training offerings in Appleton, Wisconsin: Machine Learning Training

We offer private customized training for groups of 3 or more attendees.

Machine Learning Training Catalog

cost: $ 2090length: 2.5 day(s)
cost: $ 2090length: 3 day(s)
cost: $ 3170length: 6 day(s)
cost: $ 1800length: 2 day(s)

AI Classes

cost: $ 890length: 2 day(s)

AWS Classes

Azure Classes

Business Analysis Classes

cost: $ 1200length: 3 day(s)

Python Programming Classes

cost: $ 1190length: 3 day(s)
cost: $ 1790length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

Back in the late 90's, there were a number of computer scienctists claiming to know java in hopes of landing a job for $80k+/year.  In fact, I know a woman you did just that:  land a project management position with a large telecom and have no experience whatsoever.  I guess the company figured that some talent was better than no talent and that, with some time and training, she would be productive.  Like all gravey train stories, that one, too, had an end.  After only a year, she was given a pink slip.

Not only are those days over, job prospects for the IT professional have become considerably more demanding.  Saying you know java today is like saying you know that you have expertise with the computer mouse; that's nice, but what else can you do.   This demand can be attributed to an increase in global competition along with the introduction of a number of varied technologies.   Take .NET, Python, Ruby, Spring, Hibernate ... as an example;  most of them, along with many others, are the backbone of the IT infrastructure of most mid-to-large scale US corporations.  Imagine the difficulty in finding the right mix of experience, knowledge and talent to support, maintain and devlop with such desparate technologies.

Well imagine no more.  According to the IT Hiring Index and Skills Report, seventy percent of CIO’s said it's challenging to find skilled professionals today.  If we add the rapid rate of technological innovation into the mix of factors affecting more businesses now than ever before, it’s understandable that the skill gap is widening.  Consider this as well:  the economic downturn has forced many potential retires to remain in the workforce.  This is detailed in MetLife's annual Study of Employee Benefits which states that“more than one-third of surveyed Baby Boomers (35%) say that as a result of economic conditions they plan to postpone their retirement.”  How then does the corporation hire new, more informed/better educated talent?    Indeed, the IT skills gap is ever widening.

In order to compensate for these skill discrepencies, many firms have resorted to hire the ideal candidates by demanding they possess a christmas wish list of expertise in a variety of different IT disciplines.  It would not be uncommon that such individuals have a strong programming background and are brilliant DBA's.  What about training?  That is certainly a way to diminish the skills gap.

The original article was posted by Michael Veksler on Quora

A very well known fact is that code is written once, but it is read many times. This means that a good developer, in any language, writes understandable code. Writing understandable code is not always easy, and takes practice. The difficult part, is that you read what you have just written and it makes perfect sense to you, but a year later you curse the idiot who wrote that code, without realizing it was you.

The best way to learn how to write readable code, is to collaborate with others. Other people will spot badly written code, faster than the author. There are plenty of open source projects, which you can start working on and learn from more experienced programmers.

Readability is a tricky thing, and involves several aspects:

  1. Never surprise the reader of your code, even if it will be you a year from now. For example, don’t call a function max() when sometimes it returns the minimum().
  2. Be consistent, and use the same conventions throughout your code. Not only the same naming conventions, and the same indentation, but also the same semantics. If, for example, most of your functions return a negative value for failure and a positive for success, then avoid writing functions that return false on failure.
  3. Write short functions, so that they fit your screen. I hate strict rules, since there are always exceptions, but from my experience you can almost always write functions short enough to fit your screen. Throughout my carrier I had only a few cases when writing short function was either impossible, or resulted in much worse code.
  4. Use descriptive names, unless this is one of those standard names, such as i or it in a loop. Don’t make the name too long, on one hand, but don’t make it cryptic on the other.
  5. Define function names by what they do, not by what they are used for or how they are implemented. If you name functions by what they do, then code will be much more readable, and much more reusable.
  6. Avoid global state as much as you can. Global variables, and sometimes attributes in an object, are difficult to reason about. It is difficult to understand why such global state changes, when it does, and requires a lot of debugging.
  7. As Donald Knuth wrote in one of his papers: “Early optimization is the root of all evil”. Meaning, write for readability first, optimize later.
  8. The opposite of the previous rule: if you have an alternative which has similar readability, but lower complexity, use it. Also, if you have a polynomial alternative to your exponential algorithm (when N > 10), you should use that.

Use standard library whenever it makes your code shorter; don’t implement everything yourself. External libraries are more problematic, and are both good and bad. With external libraries, such as boost, you can save a lot of work. You should really learn boost, with the added benefit that the c++ standard gets more and more form boost. The negative with boost is that it changes over time, and code that works today may break tomorrow. Also, if you try to combine a third-party library, which uses a specific version of boost, it may break with your current version of boost. This does not happen often, but it may.

Don’t blindly use C++ standard library without understanding what it does - learn it. You look at std::vector::push_back() documentation at it tells you that its complexity is O(1), amortized. What does that mean? How does it work? What are benefits and what are the costs? Same with std::map, and with std::unordered_map. Knowing the difference between these two maps, you’d know when to use each one of them.

Never call new or delete directly, use std::make_unique and [cost c++]std::make_shared[/code] instead. Try to implement usique_ptr, shared_ptr, weak_ptr yourself, in order to understand what they actually do. People do dumb things with these types, since they don’t understand what these pointers are.

Every time you look at a new class or function, in boost or in std, ask yourself “why is it done this way and not another?”. It will help you understand trade-offs in software development, and will help you use the right tool for your job. Don’t be afraid to peek into the source of boost and the std, and try to understand how it works. It will not be easy, at first, but you will learn a lot.

Know what complexity is, and how to calculate it. Avoid exponential and cubic complexity, unless you know your N is very low, and will always stay low.

Learn data-structures and algorithms, and know them. Many people think that it is simply a wasted time, since all data-structures are implemented in standard libraries, but this is not as simple as that. By understanding data-structures, you’d find it easier to pick the right library. Also, believe it or now, after 25 years since I learned data-structures, I still use this knowledge. Half a year ago I had to implemented a hash table, since I needed fast serialization capability which the available libraries did not provide. Now I am writing some sort of interval-btree, since using std::map, for the same purpose, turned up to be very very slow, and the performance bottleneck of my code.

Notice that you can’t just find interval-btree on Wikipedia, or stack-overflow. The closest thing you can find is Interval tree, but it has some performance drawbacks. So how can you implement an interval-btree, unless you know what a btree is and what an interval-tree is? I strongly suggest, again, that you learn and remember data-structures.

These are the most important things, which will make you a better programmer. The other things will follow.

Millions of people experienced the frustration and failures of the Obamacare website when it first launched. Because the code for the back end is not open source, the exact technicalities of the initial failings are tricky to determine. Many curious programmers and web designers have had time to examine the open source coding on the front end, however, leading to reasonable conclusions about the nature of the overall difficulties.

Lack of End to End Collaboration
The website was developed with multiple contractors for the front-end and back-end functions. The site also needed to be integrated with insurance companies, IRS servers, Homeland Security servers, and the Department of Veterans Affairs, all of whom had their own legacy systems. The large number of parties involved and the complex nature of the various components naturally complicated the testing and integration of each portion of the project.

The errors displayed, and occasionally the lack thereof, indicated an absence of coordination between the parties developing the separate components. A failed sign up attempt, for instance, often resulted in a page that displayed the header but had no content or failure message. A look at end user requests revealed that the database was unavailable. Clearly, the coding for the front end did not include errors for failures on the back end.

Bloat and the Abundance of Minor Issues
Obviously, numerous bugs were also an issue. The system required users to create passwords that included numbers, for example, but failed to disclose that on the form and in subsequent failure messages, leaving users baffled. In another issue, one of the pages intended to ask users to please wait or call instead, but the message and the phone information were accidentally commented out in the code.

While the front-end design has been cleared of blame for the most serious failures, bloat in the code did contribute to the early difficulties users experienced. The site design was heavy with Javascript and CSS files, and it was peppered with small coding errors that became particularly troublesome when users faced bottlenecks in traffic. Frequent typos throughout the code proved to be an additional embarrassment and were another indication of a troubled development process.

NoSQL Database
The NoSQL database is intended to allow for scalability and flexibility in the architecture of projects that will use it. This made NoSQL a logical choice for the health insurance exchange website. The newness of the technology, however, means personnel with expertise can be elusive. Database-related missteps were more likely the result of a lack of experienced administrators than with the technology itself. The choice of the NoSQL database was thus another complication in the development, but did not itself cause the failures.

Another factor of consequence is that the website was built with both agile and waterfall methodology elements. With agile methods for the front end and the waterfall methodology for the back end, streamlining was naturally going to suffer further difficulties. The disparate contractors, varied methods of software development, and an unrealistically short project time line all contributed to the coding failures of the website.

 

Welcome to the career field of Business Intelligence. Business Intelligence is a concept that involves a certain level of interaction within an organism, analytically and dynamically, to come to business solutions which implement better, more effective and timely decision making. These solutions are reached by establishing an understanding of the right kinds of user data: what is going well, what is going wrong, taking and monitoring certain actions, previously unknown trends, and patterns, and improved collaboration. When all of this data is taken into account, the entire decision-making process, within a business, will inevitably improve. As an Oracle BI developer, there are specific skills which will drastically make your job easier and results more effective. As time goes on and technology changes, the list is constantly being updated. The following are skills an Oracle Business Intelligence Developer might need to know or learn in 2019.

 

Communication

Tech Life in Wisconsin

Fun Facts and stats: • Wisconsin’s nickname is the Badger State. • In 1882 the first hydroelectric plant in the United States was built at Fox River. • The first practical typewriter was designed in Milwaukee in 1867. • The nation's first kindergarten was established in Watertown in 1856. Its first students were local German-speaking youngsters. • The Republican Party was founded in Ripon in 1854.
We learn wisdom from failure much more than from success. We often discover what will do, by finding out what will not do; and probably he who never made a mistake never made a discovery. Samuel Smiles
other Learning Options
Software developers near Appleton have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Wisconsin that offer opportunities for Machine Learning developers
Company Name City Industry Secondary Industry
We Energies Milwaukee Energy and Utilities Gas and Electric Utilities
Bemis Company, Inc. Neenah Manufacturing Plastics and Rubber Manufacturing
Regal Beloit Corporation Beloit Manufacturing Tools, Hardware and Light Machinery
Manitowoc Company, Inc Manitowoc Manufacturing Heavy Machinery
Briggs and Stratton Corporation Milwaukee Manufacturing Tools, Hardware and Light Machinery
Mortgage Guaranty Insurance Corporation (MGIC) Milwaukee Financial Services Lending and Mortgage
A.O. Smith Corporation Milwaukee Manufacturing Tools, Hardware and Light Machinery
Sentry Insurance Stevens Point Financial Services Insurance and Risk Management
Rockwell Automation, Inc. Milwaukee Manufacturing Tools, Hardware and Light Machinery
Bucyrus International, Inc. South Milwaukee Manufacturing Heavy Machinery
Diversey, Inc. Sturtevant Manufacturing Chemicals and Petrochemicals
Alliant Energy Corporation Madison Energy and Utilities Gas and Electric Utilities
Plexus Corp. Neenah Manufacturing Manufacturing Other
Spectrum Brands Holdings, Inc. Madison Manufacturing Tools, Hardware and Light Machinery
Kohl's Corporation Menomonee Falls Retail Department Stores
Snap-on Tools, Inc. Kenosha Manufacturing Tools, Hardware and Light Machinery
Fiserv, Inc. Brookfield Software and Internet Data Analytics, Management and Storage
CUNA Mutual Group Madison Financial Services Insurance and Risk Management
Oshkosh Corporation Oshkosh Manufacturing Heavy Machinery
Modine Manufacturing Company Racine Manufacturing Manufacturing Other
Northwestern Mutual Life Insurance Company Milwaukee Financial Services Insurance and Risk Management
Joy Global Inc. Milwaukee Manufacturing Heavy Machinery
Harley-Davidson, Inc. Milwaukee Manufacturing Automobiles, Boats and Motor Vehicles
American Family Insurance Madison Financial Services Insurance and Risk Management
Johnson Controls, Inc. Milwaukee Manufacturing Heavy Machinery
ManpowerGroup Milwaukee Business Services HR and Recruiting Services

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Wisconsin since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Machine Learning programming
  • Get your questions answered by easy to follow, organized Machine Learning experts
  • Get up to speed with vital Machine Learning programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Appleton, Wisconsin Machine Learning Training , Appleton, Wisconsin Machine Learning Training Classes, Appleton, Wisconsin Machine Learning Training Courses, Appleton, Wisconsin Machine Learning Training Course, Appleton, Wisconsin Machine Learning Training Seminar
training locations
Wisconsin cities where we offer Machine Learning Training Classes

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.