Azure Training Classes in Washington D C, Maryland

Learn Azure in Washington D C, Maryland and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Azure related training offerings in Washington D C, Maryland: Azure Training

We offer private customized training for groups of 3 or more attendees.
Washington-D-C  Upcoming Instructor Led Online and Public Azure Training Classes
Microsoft Azure AI Fundamentals (AI-900T00) Training/Class 25 November, 2024 - 25 November, 2024 $560
HSG Training Center instructor led online
Washington-D-C, Maryland
Hartmann Software Group Training Registration

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

On March 6 of this year, Microsoft's .NET Foundation released its third preview release of .NET Core 3 — which is its free and open-source framework for developing apps on Windows, MacOS and Linux — with an official release scheduled for later this year. This release brings a wealth of new features and enhancements. This includes the following: 
 
1. Windows Desktop Support
 
One of the biggest additions to version 3.0 of the framework is the ability to develop Windows desktop applications. The new Windows Desktop component lets you build applications using either the Windows Presentation Foundation (WPF) graphical subsystem or the Windows Forms graphical class library. You can also use Windows UI XAML Library (WinUI) controls in your applications. 
 
The Windows Desktop component is only supported and included on Windows installs. 
 
2. Support for C# 8
 
The new framework has support for C# 8, which includes not only the ability to create asynchronous steams but features such as: 
 
Index and Range data types
Using declarations
Switch expressions
 
The Index and Range data types make array manipulation easier, while Using declarations ensure that your objects get disposed once they are out of scope. Finally, Switch expressions extend Switch statements by allowing you to return a value. 
 
3. IEEE Floating-Point Improvements
 
The new framework includes floating point APIs that comply with IEEE 754-2008. This includes fixes to both formatting and parsing as well as new Math APIs such as: 
 
BitIncrement/BitDecrement
MaxMagnitude/MinMagnitude
ILogB
ScaleB
Log2
FusedMultiplyAdd
CopySign
 
4. Support for Performance-Oriented CPU Instructions
 
The new framework includes support for both SIMD and Bit Manipulation instruction sets, which can create significant performance boosts in certain situations, such as when you are processing data in parallel. 
 
5. Default Executables
 
With the new framework, you can now produce framework-dependent executables by default without having to use self-contained deployments. 
 
6. Local dotnet Tools
 
In the previous version of the framework, there was support for global dotnet tools. But the current version adds support for local tools as well. These tools are associated with a specific disk location, and this allows you to enable per-repository and per-project tooling. 
 
7. Support for MSIX Deployments
 
The new framework supports MSIX, which is a Windows app package format that you can use when deploying Windows desktop applications. 
 
8. Built-In and Fast JSON Support
 
In prior versions of the framework, you had to use Json.NET if you wanted JSON support in your application. The framework, though, now has built-in support that is not only fast but also has low allocation requirements. It also adds 3 new JSON types, which include: 
 
Utf8JsonReader
Utf8JsonWriter
JsonDocument
 
9. Cryptography Support
 
The new framework supports AES-GCM and AES-CCM ciphers. It also supports the importing and exporting of asymmetric public and private keys from a variety of formats without the need of an X.509 certificate. 
 
Platform Support
 
.NET Core 3 supports the following operating systems: 
 
Alpine: 3.8+
Debian: 9+
Fedora: 26+
macOS: 10.12+
openSUSE: 42.3+
RHEL: 6+
SLES: 12+
Ubuntu: 16.04+
Windows Clients: 7, 8.1, 10 (1607+)
Windows Servers: 2012 R2 SP1+
 
The framework further supports the following chips: 
 
x64 (Windows, macOS and Linux)
x86 (Windows)
ARM32 (Windows and Linux)
ARM64 (Linux)
 Jump to top
 

Python and Ruby, each with roots going back into the 1990s, are two of the most popular interpreted programming languages today. Ruby is most widely known as the language in which the ubiquitous Ruby on Rails web application framework is written, but it also has legions of fans that use it for things that have nothing to do with the web. Python is a big hit in the numerical and scientific computing communities at the present time, rapidly displacing such longtime stalwarts as R when it comes to these applications. It too, however, is also put to a myriad of other uses, and the two languages probably vie for the title when it comes to how flexible their users find them.

A Matter of Personality...


That isn't to say that there aren't some major, immediately noticeable, differences between the two programming tongues. Ruby is famous for its flexibility and eagerness to please; it is seen by many as a cleaned-up continuation of Perl's "Do What I Mean" philosophy, whereby the interpreter does its best to figure out the meaning of evening non-canonical syntactic constructs. In fact, the language's creator, Yukihiro Matsumoto, chose his brainchild's name in homage to that earlier language's gemstone-inspired moniker.

Python, on the other hand, takes a very different tact. In a famous Python Enhancement Proposal called "The Zen of Python," longtime Pythonista Tim Peters declared it to be preferable that there should only be a single obvious way to do anything. Python enthusiasts and programmers, then, generally prize unanimity of style over syntactic flexibility compared to those who choose Ruby, and this shows in the code they create. Even Python's whitespace-sensitive parsing has a feel of lending clarity through syntactical enforcement that is very much at odds with the much fuzzier style of typical Ruby code.

For example, Python's much-admired list comprehension feature serves as the most obvious way to build up certain kinds of lists according to initial conditions:

a = [x**3 for x in range(10,20)]
b = [y for y in a if y % 2 == 0]

first builds up a list of the cubes of all of the numbers between 10 and 19 (yes, 19), assigning the result to 'a'. A second list of those elements in 'a' which are even is then stored in 'b'. One natural way to do this in Ruby is probably:

a = (10..19).map {|x| x ** 3}
b = a.select {|y| y.even?}

but there are a number of obvious alternatives, such as:

a = (10..19).collect do |x|
x ** 3
end

b = a.find_all do |y|
y % 2 == 0
end

It tends to be a little easier to come up with equally viable, but syntactically distinct, solutions in Ruby compared to Python, even for relatively simple tasks like the above. That is not to say that Ruby is a messy language, either; it is merely that it is somewhat freer and more forgiving than Python is, and many consider Python's relative purity in this regard a real advantage when it comes to writing clear, easily understandable code.

And Somewhat One of Performance

It is rather unfortunate that in the ever changing and rapidly improving world of technology, we hardly remember the geniuses who through their inventions laid the foundation for many of the conveniences and features we now enjoy in our favorite communication devices.

This article is a tribute to the ten people who made these discoveries and an attempt to bring their achievements into the limelight.

1.      Marty Cooper

Did you know that Cooper was the first to file the patent in 1973, when he was already working for Motorola for the “radio telephone system”. The Cooper’s Law is his brainchild and to think that he himself was inspired to come out with the patent was Star Trek and its Captain Kirk is indeed revealing.

2. Mike Lazardidis
 

Studying a functional programming language is a good way to discover new approaches to problems and different ways of thinking. Although functional programming has much in common with logic and imperative programming, it uses unique abstractions and a different toolset for solving problems. Likewise, many current mainstream languages are beginning to pick up and integrate various techniques and features from functional programming.

Many authorities feel that Haskell is a great introductory language for learning functional programming. However, there are various other possibilities, including Scheme, F#, Scala, Clojure, Erlang and others.

Haskell is widely recognized as a beautiful, concise and high-performing programming language. It is statically typed and supports various cool features that augment language expressivity, including currying and pattern matching. In addition to monads, the language support a type-class system based on methods; this enables higher encapsulation and abstraction. Advanced Haskell will require learning about combinators, lambda calculus and category theory. Haskell allows programmers to create extremely elegant solutions.

Scheme is another good learning language -- it has an extensive history in academia and a vast body of instructional documents. Based on the oldest functional language -- Lisp -- Scheme is actually very small and elegant. Studying Scheme will allow the programmer to master iteration and recursion, lambda functions and first-class functions, closures, and bottom-up design.

Supported by Microsoft and growing in popularity, F# is a multi-paradigm, functional-first programming language that derives from ML and incorporates features from numerous languages, including OCaml, Scala, Haskell and Erlang. F# is described as a functional language that also supports object-oriented and imperative techniques. It is a .NET family member. F# allows the programmer to create succinct, type-safe, expressive and efficient solutions. It excels at parallel I/O and parallel CPU programming, data-oriented programming, and algorithmic development.

Scala is a general-purpose programming and scripting language that is both functional and object-oriented. It has strong static types and supports numerous functional language techniques such as pattern matching, lazy evaluation, currying, algebraic types, immutability and tail recursion. Scala -- from "scalable language" -- enables coders to write extremely concise source code. The code is compiled into Java bytecode and executes on the ubiquitous JVM (Java virtual machine).

Like Scala, Clojure also runs on the Java virtual machine. Because it is based on Lisp, it treats code like data and supports macros. Clojure's immutability features and time-progression constructs enable the creation of robust multithreaded programs.

Erlang is a highly concurrent language and runtime. Initially created by Ericsson to enable real-time, fault-tolerant, distributed applications, Erlang code can be altered without halting the system. The language has a functional subset with single assignment, dynamic typing, and eager evaluation. Erlang has powerful explicit support for concurrent processes.

 

Computer Programming as a Career?

What little habits make you a better software engineer?

Tech Life in Maryland

Maryland has several historic and renowned private colleges and universities such as St. John?s College, Washington College, Towson University, and the University of Maryland Baltimore, the most prominent of which is Johns Hopkins University. The city of Annapolis, is known as the sailing capital of the world. The Tech Council of Maryland (TCM), Maryland?s largest trade association for technology and life science companies, announced in October 2013 that Rockville, Md. based IT services firm Optimal Networks, was the winner of the organization?s first annual ?Outstanding Place to Work? award, Portal Solutions, a Rockville-based technology services firm and DMI, in Bethesda, were runners up.
Good judgment comes from experience, and experience comes from bad judgment. Frederick P. Brooks
other Learning Options
Software developers near Washington D C have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Maryland that offer opportunities for Azure developers
Company Name City Industry Secondary Industry
McCormick and Company, Incorporated Sparks Wholesale and Distribution Grocery and Food Wholesalers
USEC Inc. Bethesda Manufacturing Manufacturing Other
Coventry Health Care, Inc. Bethesda Healthcare, Pharmaceuticals and Biotech Healthcare, Pharmaceuticals, and Biotech Other
Host Hotels and Resorts, Inc. Bethesda Travel, Recreation and Leisure Hotels, Motels and Lodging
W.R. Grace and Co. Columbia Agriculture and Mining Farming and Ranching
Discovery Communications, Inc. Silver Spring Media and Entertainment Radio and Television Broadcasting
Legg Mason, Inc. Baltimore Financial Services Financial Services Other
Marriott International Inc. Bethesda Travel, Recreation and Leisure Hotels, Motels and Lodging
Constellation Energy Resources, LLC Baltimore Energy and Utilities Gas and Electric Utilities
Lockheed Martin Corporation Bethesda Manufacturing Aerospace and Defense
T. Rowe Price Baltimore Financial Services Investment Banking and Venture Capital

training details locations, tags and why hsg

the hartmann software group advantage
A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Maryland since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Azure programming
  • Get your questions answered by easy to follow, organized Azure experts
  • Get up to speed with vital Azure programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Washington D C, Maryland Azure Training , Washington D C, Maryland Azure Training Classes, Washington D C, Maryland Azure Training Courses, Washington D C, Maryland Azure Training Course, Washington D C, Maryland Azure Training Seminar
training locations
Maryland cities where we offer Azure Training Classes

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.