C Programming Training Classes in Montpelier, Vermont

Learn C Programming in Montpelier, Vermont and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current C Programming related training offerings in Montpelier, Vermont: C Programming Training

We offer private customized training for groups of 3 or more attendees.

C Programming Training Catalog

cost: $ 1190length: 3 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 2250length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

Wondering why Cisco is teaching network engineers Python in addition to their core expertise?
 
Yes, arguably there are many other tools available to use to automate the network without writing any code. It is also true that when code is absolutely necessary, in most companies software developers will write the code for the network engineers. However, networks are getting progressively more sophisticated and the ability for network engineers to keep up with the rate of change, scale of networks, and processing of requirements is becoming more of a challenge with traditional methodologies. 
 
Does that mean that all network engineers have to become programmers in the future? Not completely, but having certain tools in your tool belt may be the deciding factor in new or greater career opportunities. The fact is that current changes in the industry will require Cisco engineers to become proficient in programming, and the most common programming language for this new environment is the Python programming language. Already there are more opportunities for those who can understand programming and can also apply it to traditional networking practices. 
 
Cisco’s current job boards include a search for a Sr. Network Test Engineer and for several Network Consulting Engineers, each with  "competitive knowledge" desired Python and Perl skills. Without a doubt, the most efficient network engineers in the future will be the ones who will be able to script their automated network-related tasks, create their own services directly in the network, and continuously modify their scripts. 
 
Whether you are forced to attend or are genuinely interested in workshops or courses that cover the importance of learning topics related to programmable networks such as Python, the learning curve at the very least will provide you with an understanding of Python scripts and the ability to be able to use them instead of the CLI commands and the copy and paste options commonly used.  Those that plan to cling to their CLI will soon find themselves obsolete.
 
As with anything new, learning a programming language and using new APIs for automation will require engineers to learn and master the skills before deploying widely across their network. The burning question is where to start and which steps to take next? 
 
In How Do I Get Started Learning Network Programmability?  Hank Preston – on the Cisco blog page suggest a three phase approach to diving into network programmability.
 
“Phase 1: Programming Basics
In this first phase you need to build a basic foundation in the programmability skills, topics, and technologies that will be instrumental in being successful in this journey.  This includes learning basic programming skills like variables, operations, conditionals, loops, etc.  And there really is no better language for network engineers to leverage today than Python.  Along with Python, you should explore APIs (particularly REST APIs), data formats like JSON, XML, and YAML. And if you don’t have one already, sign up for a GitHub account and learn how to clone, pull, and push to repos.
 
Phase 2: Platform Topics
Once you have the programming fundamentals squared away (or at least working on squaring them away) the time comes to explore the new platforms of Linux, Docker, and “the Cloud.”  As applications are moving from x86 virtualization to micro services, and now serverless, the networks you build will be extending into these new areas and outside of traditional physical network boxes.  And before you can intelligently design or engineer the networks for those environments, you need to understand how they basically work.  The goal isn’t to become a big bushy beard wearing Unix admin, but rather to become comfortable working in these areas.
 
Phase 3: Networking for Today and Tomorrow
Now you are ready to explore the details of networking in these new environments.  In phase three you will dive deep into Linux, container/Docker, cloud, and micro service networking.  You have built the foundation of knowledge needed to take a hard look at how networking works inside these new environments.  Explore all the new technologies, software, and strategies for implementing and segmenting critical applications in the “cloud native” age and add value to the application projects.”
 
Community resources: 
GitHub’s, PYPL Popularity of Programming Language lists Python as having grown 13.2% in demand in the last 5 years. 
Python in the  June 2018 TIOBE Index ranks as the fourth most popular language behind Java, C and C++. 
 
Despite the learning curve, having Python in your tool belt is without a question a must have tool.

There has been and continues to be a plethora of observational studies by different researchers in the publishing industry focused on how e-books have affected hard-copy book sales. Evidence from these studies has indicated that there is a significant and monumental shift away from hard-copy books to e-books.[1]These findings precipitate fears that hard-copy books might become more expensive in the near future as they begin to be less available.  This scenario could escalate to the point where only collectors of hard-copy books are willing to pay the high price for ownership.

The founder of Amazon, Jeff Bezos, made a statement in July 2010 that sales of digital books had significantly outstripped U.S. sales of hard-copy. He claimed that Amazon had sold 143 digital books for its e-reader, the Kindle, for every 100 hard-back books over the past three months. The pace of this change was unprecedented;  Amazon said that in the four weeks of June 2010, the rate of sales had reached 180 e-books for every 100 hard-backs sold. Bezos said sales of the Kindle and e-books had reached a "tipping point", with five authors including Steig Larsson, the writer of Girl with a Dragon Tattoo, and Stephenie Meyer, who penned the Twilight series, each selling more than 500,000 digital books.[2] Earlier in July 2010, Hachette said that James Patterson had sold 1.1m e-books to date.

According to a report made by Publishers Weekly, for the first quarter of 2011, e-book sales were up 159.8%; netting sales of $233.1 million. Although adult hard-cover and mass market paperback hard-copies had continued to sell, posting gains in March, all the print segments had declined for the first quarter with the nine mass market houses that report sales. Their findings revealed a 23.4% sales decline, and that children’s paper-back publishers had also declined by 24.1%.[3] E-book sales easily out-distanced mass market paperback sales in the first quarter of 2011 with mass market sales of hard-copy books falling to $123.3 million compared to e-books’ $233.1 million in sales.

According to .net sales report by the March Association of American Publishers (AAP) which collected data and statistics from 1,189 publishers, the adult e-Book sales were $282.3 million in comparison to adult hard-cover book sales which counted $229.6 million during the first quarter of 2012. During the same period in 2011, eBooks revenues were $220.4 million.[4] These reports indicate a disconcerting diminishing demand for hard-copy books.

The original article was posted by Michael Veksler on Quora

A very well known fact is that code is written once, but it is read many times. This means that a good developer, in any language, writes understandable code. Writing understandable code is not always easy, and takes practice. The difficult part, is that you read what you have just written and it makes perfect sense to you, but a year later you curse the idiot who wrote that code, without realizing it was you.

The best way to learn how to write readable code, is to collaborate with others. Other people will spot badly written code, faster than the author. There are plenty of open source projects, which you can start working on and learn from more experienced programmers.

Readability is a tricky thing, and involves several aspects:

  1. Never surprise the reader of your code, even if it will be you a year from now. For example, don’t call a function max() when sometimes it returns the minimum().
  2. Be consistent, and use the same conventions throughout your code. Not only the same naming conventions, and the same indentation, but also the same semantics. If, for example, most of your functions return a negative value for failure and a positive for success, then avoid writing functions that return false on failure.
  3. Write short functions, so that they fit your screen. I hate strict rules, since there are always exceptions, but from my experience you can almost always write functions short enough to fit your screen. Throughout my carrier I had only a few cases when writing short function was either impossible, or resulted in much worse code.
  4. Use descriptive names, unless this is one of those standard names, such as i or it in a loop. Don’t make the name too long, on one hand, but don’t make it cryptic on the other.
  5. Define function names by what they do, not by what they are used for or how they are implemented. If you name functions by what they do, then code will be much more readable, and much more reusable.
  6. Avoid global state as much as you can. Global variables, and sometimes attributes in an object, are difficult to reason about. It is difficult to understand why such global state changes, when it does, and requires a lot of debugging.
  7. As Donald Knuth wrote in one of his papers: “Early optimization is the root of all evil”. Meaning, write for readability first, optimize later.
  8. The opposite of the previous rule: if you have an alternative which has similar readability, but lower complexity, use it. Also, if you have a polynomial alternative to your exponential algorithm (when N > 10), you should use that.

Use standard library whenever it makes your code shorter; don’t implement everything yourself. External libraries are more problematic, and are both good and bad. With external libraries, such as boost, you can save a lot of work. You should really learn boost, with the added benefit that the c++ standard gets more and more form boost. The negative with boost is that it changes over time, and code that works today may break tomorrow. Also, if you try to combine a third-party library, which uses a specific version of boost, it may break with your current version of boost. This does not happen often, but it may.

Don’t blindly use C++ standard library without understanding what it does - learn it. You look at std::vector::push_back() documentation at it tells you that its complexity is O(1), amortized. What does that mean? How does it work? What are benefits and what are the costs? Same with std::map, and with std::unordered_map. Knowing the difference between these two maps, you’d know when to use each one of them.

Never call new or delete directly, use std::make_unique and [cost c++]std::make_shared[/code] instead. Try to implement usique_ptr, shared_ptr, weak_ptr yourself, in order to understand what they actually do. People do dumb things with these types, since they don’t understand what these pointers are.

Every time you look at a new class or function, in boost or in std, ask yourself “why is it done this way and not another?”. It will help you understand trade-offs in software development, and will help you use the right tool for your job. Don’t be afraid to peek into the source of boost and the std, and try to understand how it works. It will not be easy, at first, but you will learn a lot.

Know what complexity is, and how to calculate it. Avoid exponential and cubic complexity, unless you know your N is very low, and will always stay low.

Learn data-structures and algorithms, and know them. Many people think that it is simply a wasted time, since all data-structures are implemented in standard libraries, but this is not as simple as that. By understanding data-structures, you’d find it easier to pick the right library. Also, believe it or now, after 25 years since I learned data-structures, I still use this knowledge. Half a year ago I had to implemented a hash table, since I needed fast serialization capability which the available libraries did not provide. Now I am writing some sort of interval-btree, since using std::map, for the same purpose, turned up to be very very slow, and the performance bottleneck of my code.

Notice that you can’t just find interval-btree on Wikipedia, or stack-overflow. The closest thing you can find is Interval tree, but it has some performance drawbacks. So how can you implement an interval-btree, unless you know what a btree is and what an interval-tree is? I strongly suggest, again, that you learn and remember data-structures.

These are the most important things, which will make you a better programmer. The other things will follow.

In programming, memory leaks are a common issue, and it occurs when a computer uses memory but does not give it back to the operating system. Experienced programmers have the ability to diagnose a leak based on the symptoms. Some believe every undesired increase in memory usage is a memory leak, but this is not an accurate representation of a leak. Certain leaks only run for a short time and are virtually undetectable.

Memory Leak Consequences

Applications that suffer severe memory leaks will eventually exceed the memory resulting in a severe slowdown or a termination of the application.

How to Protect Code from Memory Leaks?

Preventing memory leaks in the first place is more convenient than trying to locate the leak later. To do this, you can use defensive programming techniques such as smart pointers for C++.  A smart pointer is safer than a raw pointer because it provides augmented behavior that raw pointers do not have. This includes garbage collection and checking for nulls.

If you are going to use a raw pointer, avoid operations that are dangerous for specific contexts. This means pointer arithmetic and pointer copying. Smart pointers use a reference count for the object being referred to. Once the reference count reaches zero, the excess goes into garbage collection. The most commonly used smart pointer is shared_ptr from the TR1 extensions of the C++ standard library.

Static Analysis

The second approach to memory leaks is referred to as static analysis and attempts to detect errors in your source-code. CodeSonar is one of the effective tools for detection. It provides checkers for the Power of Ten coding rules, and it is especially competent at procedural analysis. However, some might find it lagging for bigger code bases.

How to Handle a Memory Leak

For some memory leaks, the only solution is to read through the code to find and correct the error. Another one of the common approaches to C++ is to use RAII, which an acronym for Resource Acquisition Is Initialization. This approach means associating scoped objects using the acquired resources, which automatically releases the resources when the objects are no longer within scope. RAII has the advantage of knowing when objects exist and when they do not. This gives it a distinct advantage over garbage collection. Regardless, RAII is not always recommended because some situations require ordinary pointers to manage raw memory and increase performance. Use it with caution.

The Most Serious Leaks

Urgency of a leak depends on the situation, and where the leak has occurred in the operating system. Additionally, it becomes more urgent if the leak occurs where the memory is limited such as in embedded systems and portable devices.

To protect code from memory leaks, people have to stay vigilant and avoid codes that could result in a leak. Memory leaks continue until someone turns the system off, which makes the memory available again, but the slow process of a leak can eventually prejudice a machine that normally runs correctly.

 

Related:

The Five Principles of Performance

In Demand IT Skills

Tech Life in Vermont

Fun facts and stats: • With a population of fewer than nine thousand people, Montpelier, Vermont is the smallest state capital in the U.S. • Vermont's largest employer is IBM. • Vermont was the only state without a Wal-Mart until 1996. • Vermont is the leading producer of maple syrup in the United States
There are thousands of ways to mess up or damage a software projects, and only a few ways to do them well. Caspers Jones

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Vermont since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about C Programming programming
  • Get your questions answered by easy to follow, organized C Programming experts
  • Get up to speed with vital C Programming programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Montpelier, Vermont C Programming Training , Montpelier, Vermont C Programming Training Classes, Montpelier, Vermont C Programming Training Courses, Montpelier, Vermont C Programming Training Course, Montpelier, Vermont C Programming Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.