Machine Learning Training Classes in Toledo, Ohio

Learn Machine Learning in Toledo, Ohio and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Machine Learning related training offerings in Toledo, Ohio: Machine Learning Training

We offer private customized training for groups of 3 or more attendees.

Machine Learning Training Catalog

cost: $ 2090length: 2.5 day(s)
cost: $ 2090length: 3 day(s)
cost: $ 3170length: 6 day(s)
cost: $ 1800length: 2 day(s)

Azure Classes

Business Analysis Classes

cost: $ 1200length: 3 day(s)

Python Programming Classes

cost: $ 1190length: 3 day(s)
cost: $ 1790length: 3 day(s)

Blog Entries publications that: entertain, make you think, offer insight

In programming, memory leaks are a common issue, and it occurs when a computer uses memory but does not give it back to the operating system. Experienced programmers have the ability to diagnose a leak based on the symptoms. Some believe every undesired increase in memory usage is a memory leak, but this is not an accurate representation of a leak. Certain leaks only run for a short time and are virtually undetectable.

Memory Leak Consequences

Applications that suffer severe memory leaks will eventually exceed the memory resulting in a severe slowdown or a termination of the application.

How to Protect Code from Memory Leaks?

Preventing memory leaks in the first place is more convenient than trying to locate the leak later. To do this, you can use defensive programming techniques such as smart pointers for C++.  A smart pointer is safer than a raw pointer because it provides augmented behavior that raw pointers do not have. This includes garbage collection and checking for nulls.

If you are going to use a raw pointer, avoid operations that are dangerous for specific contexts. This means pointer arithmetic and pointer copying. Smart pointers use a reference count for the object being referred to. Once the reference count reaches zero, the excess goes into garbage collection. The most commonly used smart pointer is shared_ptr from the TR1 extensions of the C++ standard library.

Static Analysis

The second approach to memory leaks is referred to as static analysis and attempts to detect errors in your source-code. CodeSonar is one of the effective tools for detection. It provides checkers for the Power of Ten coding rules, and it is especially competent at procedural analysis. However, some might find it lagging for bigger code bases.

How to Handle a Memory Leak

For some memory leaks, the only solution is to read through the code to find and correct the error. Another one of the common approaches to C++ is to use RAII, which an acronym for Resource Acquisition Is Initialization. This approach means associating scoped objects using the acquired resources, which automatically releases the resources when the objects are no longer within scope. RAII has the advantage of knowing when objects exist and when they do not. This gives it a distinct advantage over garbage collection. Regardless, RAII is not always recommended because some situations require ordinary pointers to manage raw memory and increase performance. Use it with caution.

The Most Serious Leaks

Urgency of a leak depends on the situation, and where the leak has occurred in the operating system. Additionally, it becomes more urgent if the leak occurs where the memory is limited such as in embedded systems and portable devices.

To protect code from memory leaks, people have to stay vigilant and avoid codes that could result in a leak. Memory leaks continue until someone turns the system off, which makes the memory available again, but the slow process of a leak can eventually prejudice a machine that normally runs correctly.

 

Related:

The Five Principles of Performance

In Demand IT Skills

What are the three most important things non-programmers should know about programming?
 
Written by Brian Knapp, credit and reprint CodeCareerGenius
 
 
Since you asked for the three most important things that non-programmers should know about, and I’ve spent most of my career working with more non-programmers than programmers, I have a few interesting things that would help.
 
Number One - It Is Impossible To Accurately Estimate Software Projects
 
No matter what is tried. No matter what tool, agile approach, or magic fairy dust people try to apply to creating software… accurately predicting software project timelines is basically impossible.
 
There are many good reasons for this. Usually, requirements and feature ideas change on a daily/weekly basis. Often it is impossible to know what needs to be done without actually digging into the code itself. Debugging and QA can take an extraordinary amount of time.
 
And worst of all…
 
Project Managers are always pushing for shorter timelines. They largely have no respect for reality. So, at some point they are given estimates just to make them feel better about planning.
 
No matter how much planning and estimation you do, it will be wrong. At best it will be directionally correct +/- 300% of what you estimated. So, a one year project could actually take anywhere between 0 and 5 years, maybe even 10 years.
 
If you think I’m joking, look at how many major ERP projects that go over time and over budget by many years and many hundreds of millions of dollars. Look at the F-35 fighter jet software issues.
 
Or in the small, you can find many cases where a “simple bug fix” can take days when you thought it was hours.
 
All estimates are lies made up to make everyone feel better. I’ve never met a developer or manager who could accurately estimate software projects even as well as the local weatherman(or woman) predicts the weather.
 
Number Two - Productivity Is Unevenly Distributed
 
What if I told you that in the average eight hour work day the majority of the work will get done in a 30 minute timeframe? Sound crazy?
 
Well, for most programmers there is a 30–90 minute window where you are extraordinarily productive. We call this the flow state.
 
Being in the flow state is wonderful and amazing. It often is where the “magic” of building software happens.
 
Getting into flow can be difficult. It’s akin to meditation in that you have to have a period of uninterrupted focus of say 30 minutes to “get in” the flow, but a tiny interruption can pull you right out.
 
Now consider the modern workplace environment. Programmers work in open office environments where they are invited to distract each other constantly.
 
Most people need a 1–2 hour uninterrupted block to get 30–90 minutes of flow.
 
Take the 8 hour day and break it in half with a lunch break, and then pile in a few meetings and all of a sudden you are lucky to get one decent flow state session in place.
 
That is why I say that most of the work that gets done happens in a 30 minute timeframe. The other 7–8 hours are spent being distracted, answering email, going to meetings, hanging around the water cooler, going to the bathroom, and trying to remember what you were working on before all these distractions.
 
Ironically, writers, musicians, and other creative professionals have their own version of this problem and largely work alone and away from other people when they are creating new things.
 
Someday the programming world might catch on, but I doubt it.
 
Even if this became obvious, it doesn’t sit well with most companies to think that programmers would be paid for an 8 hour day and only be cranking out code for a few hours on a good day. Some corporate middle manager would probably get the bright idea to have mandatory flow state training where a guru came in and then there would be a corporate policy from a pointy haired boss mandating that programmers are now required to spend 8 hours a day in flow state and they must fill out forms to track their time and notify their superiors of their flow state activities, otherwise there would be more meetings about the current flow state reports not being filed correctly and that programmers were spending too much time “zoning out” instead of being in flow.
 
Thus, programmers would spent 7–8 hours a day pretending to be in flow state, reporting on their progress, and getting all their work done in 30 minutes of accidental flow state somewhere in the middle of all that flow state reporting.
 
If you think I’m joking about this, I’m not. I promise you this is what would happen to any company of more than 2 employees. (Even the ones run by programmers.)
 
Number Three - It Will Cost 10x What You Think
 
Being a programmer, I get a lot of non-programmers telling me about their brilliant app ideas. Usually they want me to build something for free and are so generous as to pay me up to 5% of the profits for doing 100% of the work.
 
Their ideas are just that good.
 
Now, I gently tell them that I’m not interested in building anything for free.
 
At that point they get angry, but a few ask how much it will cost. I give them a reasonable (and very incorrect) estimate of what it would cost to create the incredibly simple version of their app idea.
 
Let’s say it’s some number like $25,000.
 
They look at me like I’m a lunatic, and so I explain how much it costs to hire a contract programmer and how long it will actually take. For example’s sake let’s say it is $100/hr for 250 hours.
 
To be clear, these are made up numbers and bad estimates (See Number One for details…)
 
In actuality, to build the actual thing they want might cost $250,000, or even $2,500,000 when it’s all said and done.
 
Building software can be incredibly complex and expensive. What most people can’t wrap their head around is the fact that a company like Google, Apple, or Microsoft has spent BILLIONS of dollars to create something that looks so simple to the end user.
 
Somehow, the assumption is that something that looks simple is cheap and fast to build.
 
Building something simple and easy for the end user is time consuming and expensive. Most people just can’t do it.
 
So, the average person with a brilliant app idea thinks it will cost a few hundred or maybe a few thousand dollars to make and it will be done in a weekend is so off the mark it’s not worth considering their ideas.
 
And programmers are too eager to play along with these bad ideas (by making bad estimates and under charging for their time) that this notion is perpetuated to the average non-programmer.
 
So, a good rule of thumb is that software will cost 10 times as much as you think and take 10 times as long to finish.
 
And that leads to a bonus point…
 
BONUS - Software Is Never Done
 
Programmers never complete a software project, they only stop working on it. Software is never done.
 
I’ve worked at many software companies and I’ve never seen a software project “completed”.
 
Sure, software gets released and used. But, it is always changing, being updated, bugs get fixed, and there are always new customer requests for features.
 
Look at your favorite software and you’ll quickly realize how true this is. Facebook, Instagram, Google Search, Google Maps, GMail, iOS, Android, Windows, and now even most video games are never done.
 
There are small armies of developers just trying to keep all the software you use every day stable and bug free. Add on the fact that there are always feature requests, small changes, and new platforms to deal with, it’s a treadmill.
 
So, the only way out of the game is to stop working on software. At that point, the software begins to decay until it is no longer secure or supported.
 
Think about old Windows 3.1 software or maybe old Nintendo Cartridge video games. The current computers and video game consoles don’t even attempt to run that software anymore.
 
You can’t put an old video game in your new Nintendo Switch and have it “just work”. That is what happens when you think software is done.
 
When programmers stop working on software the software starts to die. The code itself is probably fine, but all the other software keeps moving forward until your software is no longer compatible with the current technology.
 
So, those are the four most important things that non-programmers should know about programming. I know you asked for only three, so I hope the bonus was valuable to you as well.

Technology has continued to evolve in ways that few would have been able to imagine. This has allowed electronics to become smarter, more connected and far more useful.

With the Internet of Things (IoT), they're allowing more than just computers to become connected to the Internet. This aims to make the life of the average person easier, better and more care-free.

Let's examine why the Internet of Things has become such a powerful idea that an estimated one out of every five developers currently works on an IoT project.


What is the Internet of Things?

The Internet of Things hinges on one seemingly simple concept: electronics can be embedded in machines, clothing, animals and even people to provide a networked world where the whole is more than just the sum of its parts.

For example, consider how the Internet of Things can influence things like refrigerators. They can be networked directly to the manufacturer for readings that can warn if the refrigerator is about to malfunction. They can even be connected to a grocery shopping service to allow someone to restock them automatically or to notify the owner that the refrigerator is almost out of an item.

The most interesting notion about the Internet of Things is that it's not just a situation where one “thing” connects with a party. They typically communicate with other things, which in turn allows for a network of automated processes to occur.

These processes can simplify and expedite tedious tasks to make everyday life for everyone easier, which is why projects involving the Internet of Things are so popular.


How Prevalent is IoT Development?

An estimated one in five developers are currently developing projects for the Internet of Things. Their chosen languages vary widely because of the flexibility that IoT enjoys.

For example, IoT projects that hinge on interacting with mobile phones tend to have apps written in JavaScript or Java. The back-end code that runs the IoT functionality for machines tends to be written in Assembly, C++,Java,Perl,Pythonor another compiled language for efficiency.

To put the growth of IoT work into perspective, Evans Data Corp. performed research to create predictions about IoT projects in 2014. They stated that 17% of companies would be developing IoT projects.

In this year, that figure's risen to a solid 19%. Given the fact that 44% of developers have stated that they will enter into the IoT scene this year or next, this means that development will only grow in the coming future.


The Future Involving the Internet of Things

Development of IoT-related projects will likely explode in the next few years. The advantages it brings, such as more efficient work in manufacturing environments and the projected 15% savings to the restaurant industry over the next five years, will make it one of the most valuable technological changes in the near future.

Without a comprehensive understanding of the Internet of Things and the skills to lead IoT projects, businesses and developers may find themselves falling behind. Don't let the Internet of Things pass you by.

Millions of people experienced the frustration and failures of the Obamacare website when it first launched. Because the code for the back end is not open source, the exact technicalities of the initial failings are tricky to determine. Many curious programmers and web designers have had time to examine the open source coding on the front end, however, leading to reasonable conclusions about the nature of the overall difficulties.

Lack of End to End Collaboration
The website was developed with multiple contractors for the front-end and back-end functions. The site also needed to be integrated with insurance companies, IRS servers, Homeland Security servers, and the Department of Veterans Affairs, all of whom had their own legacy systems. The large number of parties involved and the complex nature of the various components naturally complicated the testing and integration of each portion of the project.

The errors displayed, and occasionally the lack thereof, indicated an absence of coordination between the parties developing the separate components. A failed sign up attempt, for instance, often resulted in a page that displayed the header but had no content or failure message. A look at end user requests revealed that the database was unavailable. Clearly, the coding for the front end did not include errors for failures on the back end.

Bloat and the Abundance of Minor Issues
Obviously, numerous bugs were also an issue. The system required users to create passwords that included numbers, for example, but failed to disclose that on the form and in subsequent failure messages, leaving users baffled. In another issue, one of the pages intended to ask users to please wait or call instead, but the message and the phone information were accidentally commented out in the code.

While the front-end design has been cleared of blame for the most serious failures, bloat in the code did contribute to the early difficulties users experienced. The site design was heavy with Javascript and CSS files, and it was peppered with small coding errors that became particularly troublesome when users faced bottlenecks in traffic. Frequent typos throughout the code proved to be an additional embarrassment and were another indication of a troubled development process.

NoSQL Database
The NoSQL database is intended to allow for scalability and flexibility in the architecture of projects that will use it. This made NoSQL a logical choice for the health insurance exchange website. The newness of the technology, however, means personnel with expertise can be elusive. Database-related missteps were more likely the result of a lack of experienced administrators than with the technology itself. The choice of the NoSQL database was thus another complication in the development, but did not itself cause the failures.

Another factor of consequence is that the website was built with both agile and waterfall methodology elements. With agile methods for the front end and the waterfall methodology for the back end, streamlining was naturally going to suffer further difficulties. The disparate contractors, varied methods of software development, and an unrealistically short project time line all contributed to the coding failures of the website.

Tech Life in Ohio

Ulysses S. Grant, Rutherford B. Hayes, James A. Garfield, Benjamin Harrison, William McKinley, William H. Taft, and Warren G. Harding, were all U.S. Presidents born in Ohio. The first recognized university in Ohio was Ohio University founded in 1804. It wasn?t long until the first interracial and coeducational college in the United States, Oberlin, was founded in 1833. The Buckeye State produced some interesting discoveries such as: Charles Goodyear discovering the process of vulcanizing rubber in 1839; Roy J. Plunkett inventing Teflon in 1938; and Charles Kettering inventing the automobile self-starter in 1911.
Inheritance is surely a good answer but who knows the questions? Michel Gauthier
other Learning Options
Software developers near Toledo have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Ohio that offer opportunities for Machine Learning developers
Company Name City Industry Secondary Industry
Nationwide Insurance Company Columbus Financial Services Insurance and Risk Management
Owens Corning Toledo Manufacturing Concrete, Glass, and Building Materials
FirstEnergy Corp Akron Energy and Utilities Gas and Electric Utilities
The Lubrizol Corporation Wickliffe Manufacturing Chemicals and Petrochemicals
Sherwin-Williams Cleveland Retail Hardware and Building Material Dealers
Key Bank Cleveland Financial Services Banks
TravelCenters of America, Inc. Westlake Retail Gasoline Stations
Dana Holding Company Maumee Manufacturing Automobiles, Boats and Motor Vehicles
O-I (Owens Illinois), Inc. Perrysburg Manufacturing Concrete, Glass, and Building Materials
Big Lots Stores, Inc. Columbus Retail Department Stores
Limited Brands, Inc. Columbus Retail Clothing and Shoes Stores
Cardinal Health Dublin Healthcare, Pharmaceuticals and Biotech Healthcare, Pharmaceuticals, and Biotech Other
Progressive Corporation Cleveland Financial Services Insurance and Risk Management
Parker Hannifin Corporation Cleveland Manufacturing Manufacturing Other
American Financial Group, Inc. Cincinnati Financial Services Insurance and Risk Management
American Electric Power Company, Inc Columbus Energy and Utilities Gas and Electric Utilities
Fifth Third Bancorp Cincinnati Financial Services Banks
Macy's, Inc. Cincinnati Retail Department Stores
Goodyear Tire and Rubber Co. Akron Manufacturing Plastics and Rubber Manufacturing
The Kroger Co. Cincinnati Retail Grocery and Specialty Food Stores
Omnicare, Inc. Cincinnati Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
The Procter and Gamble Company Cincinnati Consumer Services Personal Care

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Ohio since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Machine Learning programming
  • Get your questions answered by easy to follow, organized Machine Learning experts
  • Get up to speed with vital Machine Learning programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Toledo, Ohio Machine Learning Training , Toledo, Ohio Machine Learning Training Classes, Toledo, Ohio Machine Learning Training Courses, Toledo, Ohio Machine Learning Training Course, Toledo, Ohio Machine Learning Training Seminar
training locations
Ohio cities where we offer Machine Learning Training Classes

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.