Design Patterns Training Classes in Mc Allen, Texas

Learn Design Patterns in Mc Allen, Texas and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Design Patterns related training offerings in Mc Allen, Texas: Design Patterns Training

We offer private customized training for groups of 3 or more attendees.

Design Patterns Training Catalog

cost: $ 1750length: 3 day(s)
cost: $ 1690length: 4 day(s)
cost: $ 790length: 2 day(s)
cost: $ 790length: 2 day(s)

Blog Entries publications that: entertain, make you think, offer insight

Let’s face it, fad or not, companies are starting to ask themselves how they could possibly use machine learning and AI technologies in their organization. Many are being lured by the promise of profits by discovering winning patterns with algorithms that will enable solid predictions… The reality is that most technology and business professionals do not have sufficient understanding of how machine learning works and where it can be applied.  For a lot of firms, the focus still tends to be on small-scale changes instead of focusing on what really matters…tackling their approach to machine learning.

In the recent Wall Street Journal article, Machine Learning at Scale Remains Elusive for Many Firms, Steven Norton captures interesting comments from the industry’s data science experts. In the article, he quotes panelists from the MIT Digital Economy Conference in NYC, on businesses current practices with AI and machine learning. All agree on the fact that, for all the talk of Machine Learning and AI’s potential in the enterprise, many firms aren’t yet equipped to take advantage of it fully.

Panelist,  Michael Chui, partner at McKinsey Global Institute states that “If a company just mechanically says OK, I’ll automate this little activity here and this little activity there, rather than re-thinking the entire process and how it can be enabled by technology, they usually get very little value out of it. “Few companies have deployed these technologies in a core business process or at scale.”

Panelist, Hilary Mason, general manager at Cloudera Inc., had this to say, “With very few exceptions, every company we work with wants to start with a cost-savings application of automation.” “Most organizations are not set up to do this well.”

Many individuals are looking to break into a video game designing career, and it's no surprise. A $9 billion industry, the video game designing business has appeal to gamers and non-gamers alike. High salaries and high rates of job satisfaction are typical in the field.

In order to design video games, however, you need a certain skill set. Computer programming is first on the list. While games are made using almost all languages, the most popular programming language for video games is C++, because of its object-oriented nature and because it compiles to binary. The next most popular languages for games are C and Java, but others such as C# and assembly language are also used. A strong background in math is usually required to learn these languages. Individuals wishing to design games should also have an extensive knowledge of both PCs and Macs.

There are many colleges and universities that offer classes not only in programming but also classes specifically on game design. Some of these schools have alliances with game developing companies, leading to jobs for students upon graduation. Programming video games can be lucrative. The average game designer's salary is $62,500, with $55,000 at the low end and $85,000 at the high end.

Programmers are not the only individuals needed to make a video game, however. There are multiple career paths within the gaming industry, including specialists in audio, design, production, visual arts and business.

Designing a video game can be an long, expensive process. The average budget for a modern multiplatform video game is $18-$28 million, with some high-profile games costing as much as $40 million. Making the game, from conception to sale, can take several months to several years. Some games have taken a notoriously long time to make; for example, 3D Realms' Duke Nukem Forever was announced in April 1997 and did not make it to shelves until July 2011.

Video game programmers have a high level of job satisfaction. In a March 2013 survey conducted by Game Developer magazine, 29 percent of game programmers were very satisfied with their jobs, and 39 percent were somewhat satisfied.

If you're interested in a game development career, now's the time to get moving. Take advantage of the many online resources available regarding these careers and start learning right away.

The original article was posted by Michael Veksler on Quora

A very well known fact is that code is written once, but it is read many times. This means that a good developer, in any language, writes understandable code. Writing understandable code is not always easy, and takes practice. The difficult part, is that you read what you have just written and it makes perfect sense to you, but a year later you curse the idiot who wrote that code, without realizing it was you.

The best way to learn how to write readable code, is to collaborate with others. Other people will spot badly written code, faster than the author. There are plenty of open source projects, which you can start working on and learn from more experienced programmers.

Readability is a tricky thing, and involves several aspects:

  1. Never surprise the reader of your code, even if it will be you a year from now. For example, don’t call a function max() when sometimes it returns the minimum().
  2. Be consistent, and use the same conventions throughout your code. Not only the same naming conventions, and the same indentation, but also the same semantics. If, for example, most of your functions return a negative value for failure and a positive for success, then avoid writing functions that return false on failure.
  3. Write short functions, so that they fit your screen. I hate strict rules, since there are always exceptions, but from my experience you can almost always write functions short enough to fit your screen. Throughout my carrier I had only a few cases when writing short function was either impossible, or resulted in much worse code.
  4. Use descriptive names, unless this is one of those standard names, such as i or it in a loop. Don’t make the name too long, on one hand, but don’t make it cryptic on the other.
  5. Define function names by what they do, not by what they are used for or how they are implemented. If you name functions by what they do, then code will be much more readable, and much more reusable.
  6. Avoid global state as much as you can. Global variables, and sometimes attributes in an object, are difficult to reason about. It is difficult to understand why such global state changes, when it does, and requires a lot of debugging.
  7. As Donald Knuth wrote in one of his papers: “Early optimization is the root of all evil”. Meaning, write for readability first, optimize later.
  8. The opposite of the previous rule: if you have an alternative which has similar readability, but lower complexity, use it. Also, if you have a polynomial alternative to your exponential algorithm (when N > 10), you should use that.

Use standard library whenever it makes your code shorter; don’t implement everything yourself. External libraries are more problematic, and are both good and bad. With external libraries, such as boost, you can save a lot of work. You should really learn boost, with the added benefit that the c++ standard gets more and more form boost. The negative with boost is that it changes over time, and code that works today may break tomorrow. Also, if you try to combine a third-party library, which uses a specific version of boost, it may break with your current version of boost. This does not happen often, but it may.

Don’t blindly use C++ standard library without understanding what it does - learn it. You look at std::vector::push_back() documentation at it tells you that its complexity is O(1), amortized. What does that mean? How does it work? What are benefits and what are the costs? Same with std::map, and with std::unordered_map. Knowing the difference between these two maps, you’d know when to use each one of them.

Never call new or delete directly, use std::make_unique and [cost c++]std::make_shared[/code] instead. Try to implement usique_ptr, shared_ptr, weak_ptr yourself, in order to understand what they actually do. People do dumb things with these types, since they don’t understand what these pointers are.

Every time you look at a new class or function, in boost or in std, ask yourself “why is it done this way and not another?”. It will help you understand trade-offs in software development, and will help you use the right tool for your job. Don’t be afraid to peek into the source of boost and the std, and try to understand how it works. It will not be easy, at first, but you will learn a lot.

Know what complexity is, and how to calculate it. Avoid exponential and cubic complexity, unless you know your N is very low, and will always stay low.

Learn data-structures and algorithms, and know them. Many people think that it is simply a wasted time, since all data-structures are implemented in standard libraries, but this is not as simple as that. By understanding data-structures, you’d find it easier to pick the right library. Also, believe it or now, after 25 years since I learned data-structures, I still use this knowledge. Half a year ago I had to implemented a hash table, since I needed fast serialization capability which the available libraries did not provide. Now I am writing some sort of interval-btree, since using std::map, for the same purpose, turned up to be very very slow, and the performance bottleneck of my code.

Notice that you can’t just find interval-btree on Wikipedia, or stack-overflow. The closest thing you can find is Interval tree, but it has some performance drawbacks. So how can you implement an interval-btree, unless you know what a btree is and what an interval-tree is? I strongly suggest, again, that you learn and remember data-structures.

These are the most important things, which will make you a better programmer. The other things will follow.

 Unlike traditional online courses that charge a fee, limit enrollment and provide credit or certification, Moocs (massive open online courses) are usually free or low cost and can host hundreds of  thousands global participants.  Although MOOC have been around for years in the form of collective techie learning gatherings, participation in 2012 has ballooned at a rapid pace likened to FaceBook in its heyday.  According to The Year of the MOOCarticle in the New YorkTimes, edX, a nonprofit start-up backed by Harvard and MIT, had 370,000 registrants in the fall of its first official courses. This paled in comparison to the amount of students that Courseraattained in its first year of online learning opportunities, 1.7 million!

Will MOOCs Replace education as we know it?

Like any new trend, massive participation in online classes has its challenges. Lynda Weinman has ample experience when pointing out that they are by no means a replacement for formal education.  As a former digital animator, special effects designer and classroom college teacher, Linda paved the path for an earlier version of MOOC education in the mid 90’s when she founded Lynda.comas an aide to her own students. Over four million students and 2,200 courses later she’s confident when clarifying that many of the collegespartnered with Lynda.com use the tutorials as added features to their existing courses.  When asked in an interview with ReadWriteBuilders, if high technical companies look at online programs in terms of advancement as a supplement to traditional education or as a way for people to further their careers, Lynda feels that “it’sjust one example of something that you can do to enhance your attractiveness to potential employers. But [it’s also important to have] a portfolio and body of work, references that actually work out, showing that you had success in the past.”

MOOC Benefits:

Tech Life in Texas

Austin may be considered the live music capital of the world but the field of technology is becoming the new norm in the The Lone Star State. Home to Dell and Compaq computers, there is a reason why central Texas is often referred to as the Silicon Valley of the south. It?s rated third on the charts of the top computer places in the United States with a social learning and training IT atmosphere. Adding the fact that Austin offers fairly inexpensive living costs for students, software developers may take note as they look to relocate.
Experience is that marvelous thing that enables you recognize a mistake when you make it again.F.P. Jones
other Learning Options
Software developers near Mc Allen have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Texas that offer opportunities for Design Patterns developers
Company Name City Industry Secondary Industry
Dr Pepper Snapple Group Plano Manufacturing Nonalcoholic Beverages
Western Refining, Inc. El Paso Energy and Utilities Gasoline and Oil Refineries
Frontier Oil Corporation Dallas Manufacturing Chemicals and Petrochemicals
ConocoPhillips Houston Energy and Utilities Gasoline and Oil Refineries
Dell Inc Round Rock Computers and Electronics Computers, Parts and Repair
Enbridge Energy Partners, L.P. Houston Transportation and Storage Transportation & Storage Other
GameStop Corp. Grapevine Retail Retail Other
Fluor Corporation Irving Business Services Management Consulting
Kimberly-Clark Corporation Irving Manufacturing Paper and Paper Products
Exxon Mobil Corporation Irving Energy and Utilities Gasoline and Oil Refineries
Plains All American Pipeline, L.P. Houston Energy and Utilities Gasoline and Oil Refineries
Cameron International Corporation Houston Energy and Utilities Energy and Utilities Other
Celanese Corporation Irving Manufacturing Chemicals and Petrochemicals
HollyFrontier Corporation Dallas Energy and Utilities Gasoline and Oil Refineries
Kinder Morgan, Inc. Houston Energy and Utilities Gas and Electric Utilities
Marathon Oil Corporation Houston Energy and Utilities Gasoline and Oil Refineries
United Services Automobile Association San Antonio Financial Services Personal Financial Planning and Private Banking
J. C. Penney Company, Inc. Plano Retail Department Stores
Energy Transfer Partners, L.P. Dallas Energy and Utilities Energy and Utilities Other
Atmos Energy Corporation Dallas Energy and Utilities Alternative Energy Sources
National Oilwell Varco Inc. Houston Manufacturing Manufacturing Other
Tesoro Corporation San Antonio Manufacturing Chemicals and Petrochemicals
Halliburton Company Houston Energy and Utilities Energy and Utilities Other
Flowserve Corporation Irving Manufacturing Tools, Hardware and Light Machinery
Commercial Metals Company Irving Manufacturing Metals Manufacturing
EOG Resources, Inc. Houston Energy and Utilities Gasoline and Oil Refineries
Whole Foods Market, Inc. Austin Retail Grocery and Specialty Food Stores
Waste Management, Inc. Houston Energy and Utilities Waste Management and Recycling
CenterPoint Energy, Inc. Houston Energy and Utilities Gas and Electric Utilities
Valero Energy Corporation San Antonio Manufacturing Chemicals and Petrochemicals
FMC Technologies, Inc. Houston Energy and Utilities Alternative Energy Sources
Calpine Corporation Houston Energy and Utilities Gas and Electric Utilities
Texas Instruments Incorporated Dallas Computers and Electronics Semiconductor and Microchip Manufacturing
SYSCO Corporation Houston Wholesale and Distribution Grocery and Food Wholesalers
BNSF Railway Company Fort Worth Transportation and Storage Freight Hauling (Rail and Truck)
Affiliated Computer Services, Incorporated (ACS), a Xerox Company Dallas Software and Internet E-commerce and Internet Businesses
Tenet Healthcare Corporation Dallas Healthcare, Pharmaceuticals and Biotech Hospitals
XTO Energy Inc. Fort Worth Energy and Utilities Gasoline and Oil Refineries
Group 1 Automotive Houston Retail Automobile Dealers
ATandT Dallas Telecommunications Telephone Service Providers and Carriers
Anadarko Petroleum Corporation Spring Energy and Utilities Gasoline and Oil Refineries
Apache Corporation Houston Energy and Utilities Gasoline and Oil Refineries
Dean Foods Company Dallas Manufacturing Food and Dairy Product Manufacturing and Packaging
American Airlines Fort Worth Travel, Recreation and Leisure Passenger Airlines
Baker Hughes Incorporated Houston Energy and Utilities Gasoline and Oil Refineries
Continental Airlines, Inc. Houston Travel, Recreation and Leisure Passenger Airlines
RadioShack Corporation Fort Worth Computers and Electronics Consumer Electronics, Parts and Repair
KBR, Inc. Houston Government International Bodies and Organizations
Spectra Energy Partners, L.P. Houston Energy and Utilities Gas and Electric Utilities
Energy Future Holdings Dallas Energy and Utilities Energy and Utilities Other
Southwest Airlines Corporation Dallas Transportation and Storage Air Couriers and Cargo Services

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Texas since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Design Patterns programming
  • Get your questions answered by easy to follow, organized Design Patterns experts
  • Get up to speed with vital Design Patterns programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Mc Allen, Texas Design Patterns Training , Mc Allen, Texas Design Patterns Training Classes, Mc Allen, Texas Design Patterns Training Courses, Mc Allen, Texas Design Patterns Training Course, Mc Allen, Texas Design Patterns Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.