Design Patterns Training Classes in Richmond, California

Learn Design Patterns in Richmond, California and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Design Patterns related training offerings in Richmond, California: Design Patterns Training

We offer private customized training for groups of 3 or more attendees.

Design Patterns Training Catalog

cost: $ 1750length: 3 day(s)
cost: $ 1690length: 4 day(s)
cost: $ 790length: 2 day(s)
cost: $ 790length: 2 day(s)

Blog Entries publications that: entertain, make you think, offer insight

F#, which is usually pronounced as F sharp is one of the newly launched and rapidly developing programming languages.  It has recently become focus of attention due to its quick advancement to the 12th position in the recent TIOBE index and the overall rise in popularity.

What is F#?

F# is an open source, functional and object oriented programming language which is available in cross platform. It was developed by a company called F# software foundation with help of Microsoft and other open contributors. F# runs on Linux, windows, iOS, Android and the GPUs and HTML as well. It is a mature programming language which helps the users as well as the organizations to solve the complex problems in a much simpler way with easy code. With its wide range of usage in the specialist and application areas, it is proving itself to be a worthy contender for the top 10 list.

Why choose F#?

What are the three most important things non-programmers should know about programming?
 
Written by Brian Knapp, credit and reprint CodeCareerGenius
 
 
Since you asked for the three most important things that non-programmers should know about, and I’ve spent most of my career working with more non-programmers than programmers, I have a few interesting things that would help.
 
Number One - It Is Impossible To Accurately Estimate Software Projects
 
No matter what is tried. No matter what tool, agile approach, or magic fairy dust people try to apply to creating software… accurately predicting software project timelines is basically impossible.
 
There are many good reasons for this. Usually, requirements and feature ideas change on a daily/weekly basis. Often it is impossible to know what needs to be done without actually digging into the code itself. Debugging and QA can take an extraordinary amount of time.
 
And worst of all…
 
Project Managers are always pushing for shorter timelines. They largely have no respect for reality. So, at some point they are given estimates just to make them feel better about planning.
 
No matter how much planning and estimation you do, it will be wrong. At best it will be directionally correct +/- 300% of what you estimated. So, a one year project could actually take anywhere between 0 and 5 years, maybe even 10 years.
 
If you think I’m joking, look at how many major ERP projects that go over time and over budget by many years and many hundreds of millions of dollars. Look at the F-35 fighter jet software issues.
 
Or in the small, you can find many cases where a “simple bug fix” can take days when you thought it was hours.
 
All estimates are lies made up to make everyone feel better. I’ve never met a developer or manager who could accurately estimate software projects even as well as the local weatherman(or woman) predicts the weather.
 
Number Two - Productivity Is Unevenly Distributed
 
What if I told you that in the average eight hour work day the majority of the work will get done in a 30 minute timeframe? Sound crazy?
 
Well, for most programmers there is a 30–90 minute window where you are extraordinarily productive. We call this the flow state.
 
Being in the flow state is wonderful and amazing. It often is where the “magic” of building software happens.
 
Getting into flow can be difficult. It’s akin to meditation in that you have to have a period of uninterrupted focus of say 30 minutes to “get in” the flow, but a tiny interruption can pull you right out.
 
Now consider the modern workplace environment. Programmers work in open office environments where they are invited to distract each other constantly.
 
Most people need a 1–2 hour uninterrupted block to get 30–90 minutes of flow.
 
Take the 8 hour day and break it in half with a lunch break, and then pile in a few meetings and all of a sudden you are lucky to get one decent flow state session in place.
 
That is why I say that most of the work that gets done happens in a 30 minute timeframe. The other 7–8 hours are spent being distracted, answering email, going to meetings, hanging around the water cooler, going to the bathroom, and trying to remember what you were working on before all these distractions.
 
Ironically, writers, musicians, and other creative professionals have their own version of this problem and largely work alone and away from other people when they are creating new things.
 
Someday the programming world might catch on, but I doubt it.
 
Even if this became obvious, it doesn’t sit well with most companies to think that programmers would be paid for an 8 hour day and only be cranking out code for a few hours on a good day. Some corporate middle manager would probably get the bright idea to have mandatory flow state training where a guru came in and then there would be a corporate policy from a pointy haired boss mandating that programmers are now required to spend 8 hours a day in flow state and they must fill out forms to track their time and notify their superiors of their flow state activities, otherwise there would be more meetings about the current flow state reports not being filed correctly and that programmers were spending too much time “zoning out” instead of being in flow.
 
Thus, programmers would spent 7–8 hours a day pretending to be in flow state, reporting on their progress, and getting all their work done in 30 minutes of accidental flow state somewhere in the middle of all that flow state reporting.
 
If you think I’m joking about this, I’m not. I promise you this is what would happen to any company of more than 2 employees. (Even the ones run by programmers.)
 
Number Three - It Will Cost 10x What You Think
 
Being a programmer, I get a lot of non-programmers telling me about their brilliant app ideas. Usually they want me to build something for free and are so generous as to pay me up to 5% of the profits for doing 100% of the work.
 
Their ideas are just that good.
 
Now, I gently tell them that I’m not interested in building anything for free.
 
At that point they get angry, but a few ask how much it will cost. I give them a reasonable (and very incorrect) estimate of what it would cost to create the incredibly simple version of their app idea.
 
Let’s say it’s some number like $25,000.
 
They look at me like I’m a lunatic, and so I explain how much it costs to hire a contract programmer and how long it will actually take. For example’s sake let’s say it is $100/hr for 250 hours.
 
To be clear, these are made up numbers and bad estimates (See Number One for details…)
 
In actuality, to build the actual thing they want might cost $250,000, or even $2,500,000 when it’s all said and done.
 
Building software can be incredibly complex and expensive. What most people can’t wrap their head around is the fact that a company like Google, Apple, or Microsoft has spent BILLIONS of dollars to create something that looks so simple to the end user.
 
Somehow, the assumption is that something that looks simple is cheap and fast to build.
 
Building something simple and easy for the end user is time consuming and expensive. Most people just can’t do it.
 
So, the average person with a brilliant app idea thinks it will cost a few hundred or maybe a few thousand dollars to make and it will be done in a weekend is so off the mark it’s not worth considering their ideas.
 
And programmers are too eager to play along with these bad ideas (by making bad estimates and under charging for their time) that this notion is perpetuated to the average non-programmer.
 
So, a good rule of thumb is that software will cost 10 times as much as you think and take 10 times as long to finish.
 
And that leads to a bonus point…
 
BONUS - Software Is Never Done
 
Programmers never complete a software project, they only stop working on it. Software is never done.
 
I’ve worked at many software companies and I’ve never seen a software project “completed”.
 
Sure, software gets released and used. But, it is always changing, being updated, bugs get fixed, and there are always new customer requests for features.
 
Look at your favorite software and you’ll quickly realize how true this is. Facebook, Instagram, Google Search, Google Maps, GMail, iOS, Android, Windows, and now even most video games are never done.
 
There are small armies of developers just trying to keep all the software you use every day stable and bug free. Add on the fact that there are always feature requests, small changes, and new platforms to deal with, it’s a treadmill.
 
So, the only way out of the game is to stop working on software. At that point, the software begins to decay until it is no longer secure or supported.
 
Think about old Windows 3.1 software or maybe old Nintendo Cartridge video games. The current computers and video game consoles don’t even attempt to run that software anymore.
 
You can’t put an old video game in your new Nintendo Switch and have it “just work”. That is what happens when you think software is done.
 
When programmers stop working on software the software starts to die. The code itself is probably fine, but all the other software keeps moving forward until your software is no longer compatible with the current technology.
 
So, those are the four most important things that non-programmers should know about programming. I know you asked for only three, so I hope the bonus was valuable to you as well.

The Zen of Python, by Tim Peters has been adopted by many as a model summary manual of python's philosophy.  Though these statements should be considered more as guideline and not mandatory rules, developers worldwide find the poem to be on a solid guiding ground.


Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

In programming, memory leaks are a common issue, and it occurs when a computer uses memory but does not give it back to the operating system. Experienced programmers have the ability to diagnose a leak based on the symptoms. Some believe every undesired increase in memory usage is a memory leak, but this is not an accurate representation of a leak. Certain leaks only run for a short time and are virtually undetectable.

Memory Leak Consequences

Applications that suffer severe memory leaks will eventually exceed the memory resulting in a severe slowdown or a termination of the application.

How to Protect Code from Memory Leaks?

Preventing memory leaks in the first place is more convenient than trying to locate the leak later. To do this, you can use defensive programming techniques such as smart pointers for C++.  A smart pointer is safer than a raw pointer because it provides augmented behavior that raw pointers do not have. This includes garbage collection and checking for nulls.

If you are going to use a raw pointer, avoid operations that are dangerous for specific contexts. This means pointer arithmetic and pointer copying. Smart pointers use a reference count for the object being referred to. Once the reference count reaches zero, the excess goes into garbage collection. The most commonly used smart pointer is shared_ptr from the TR1 extensions of the C++ standard library.

Static Analysis

The second approach to memory leaks is referred to as static analysis and attempts to detect errors in your source-code. CodeSonar is one of the effective tools for detection. It provides checkers for the Power of Ten coding rules, and it is especially competent at procedural analysis. However, some might find it lagging for bigger code bases.

How to Handle a Memory Leak

For some memory leaks, the only solution is to read through the code to find and correct the error. Another one of the common approaches to C++ is to use RAII, which an acronym for Resource Acquisition Is Initialization. This approach means associating scoped objects using the acquired resources, which automatically releases the resources when the objects are no longer within scope. RAII has the advantage of knowing when objects exist and when they do not. This gives it a distinct advantage over garbage collection. Regardless, RAII is not always recommended because some situations require ordinary pointers to manage raw memory and increase performance. Use it with caution.

The Most Serious Leaks

Urgency of a leak depends on the situation, and where the leak has occurred in the operating system. Additionally, it becomes more urgent if the leak occurs where the memory is limited such as in embedded systems and portable devices.

To protect code from memory leaks, people have to stay vigilant and avoid codes that could result in a leak. Memory leaks continue until someone turns the system off, which makes the memory available again, but the slow process of a leak can eventually prejudice a machine that normally runs correctly.

 

Related:

The Five Principles of Performance

In Demand IT Skills

Tech Life in California

Largely influenced by several immigrant populations California has experienced several technological, entertainment and economic booms over the years. As for technology, Silicon Valley, in the southern part of San Francisco is an integral part of the world?s innovators, high-tech businesses and a myriad of techie start-ups. It also accounts for 1/3rd of all venture capital investments.
The structure of a software system will reflect the communication structure of the team that built it R.E. Fairley
other Learning Options
Software developers near Richmond have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in California that offer opportunities for Design Patterns developers
Company Name City Industry Secondary Industry
Mattel, Inc. El Segundo Retail Sporting Goods, Hobby, Book, and Music Stores
Spectrum Group International, Inc. Irvine Retail Retail Other
Chevron Corp San Ramon Energy and Utilities Gasoline and Oil Refineries
Jacobs Engineering Group, Inc. Pasadena Real Estate and Construction Construction and Remodeling
eBay Inc. San Jose Software and Internet E-commerce and Internet Businesses
Broadcom Corporation Irvine Computers and Electronics Semiconductor and Microchip Manufacturing
Franklin Templeton Investments San Mateo Financial Services Investment Banking and Venture Capital
Pacific Life Insurance Company Newport Beach Financial Services Insurance and Risk Management
Tutor Perini Corporation Sylmar Real Estate and Construction Construction and Remodeling
SYNNEX Corporation Fremont Software and Internet Data Analytics, Management and Storage
Core-Mark International Inc South San Francisco Manufacturing Food and Dairy Product Manufacturing and Packaging
Occidental Petroleum Corporation Los Angeles Manufacturing Chemicals and Petrochemicals
Yahoo!, Inc. Sunnyvale Software and Internet Software and Internet Other
Edison International Rosemead Energy and Utilities Gas and Electric Utilities
Ingram Micro, Inc. Santa Ana Computers and Electronics Consumer Electronics, Parts and Repair
Safeway, Inc. Pleasanton Retail Grocery and Specialty Food Stores
Gilead Sciences, Inc. San Mateo Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
AECOM Technology Corporation Los Angeles Real Estate and Construction Architecture,Engineering and Design
Reliance Steel and Aluminum Los Angeles Manufacturing Metals Manufacturing
Live Nation, Inc. Beverly Hills Media and Entertainment Performing Arts
Advanced Micro Devices, Inc. Sunnyvale Computers and Electronics Semiconductor and Microchip Manufacturing
Pacific Gas and Electric Corp San Francisco Energy and Utilities Gas and Electric Utilities
Electronic Arts Inc. Redwood City Software and Internet Games and Gaming
Oracle Corporation Redwood City Software and Internet Software and Internet Other
Symantec Corporation Mountain View Software and Internet Data Analytics, Management and Storage
Dole Food Company, Inc. Thousand Oaks Manufacturing Food and Dairy Product Manufacturing and Packaging
CBRE Group, Inc. Los Angeles Real Estate and Construction Real Estate Investment and Development
First American Financial Corporation Santa Ana Financial Services Financial Services Other
The Gap, Inc. San Francisco Retail Clothing and Shoes Stores
Ross Stores, Inc. Pleasanton Retail Clothing and Shoes Stores
Qualcomm Incorporated San Diego Telecommunications Wireless and Mobile
Charles Schwab Corporation San Francisco Financial Services Securities Agents and Brokers
Sempra Energy San Diego Energy and Utilities Gas and Electric Utilities
Western Digital Corporation Irvine Computers and Electronics Consumer Electronics, Parts and Repair
Health Net, Inc. Woodland Hills Healthcare, Pharmaceuticals and Biotech Healthcare, Pharmaceuticals, and Biotech Other
Allergan, Inc. Irvine Healthcare, Pharmaceuticals and Biotech Biotechnology
The Walt Disney Company Burbank Media and Entertainment Motion Picture and Recording Producers
Hewlett-Packard Company Palo Alto Computers and Electronics Consumer Electronics, Parts and Repair
URS Corporation San Francisco Real Estate and Construction Architecture,Engineering and Design
Cisco Systems, Inc. San Jose Computers and Electronics Networking Equipment and Systems
Wells Fargo and Company San Francisco Financial Services Banks
Intel Corporation Santa Clara Computers and Electronics Semiconductor and Microchip Manufacturing
Applied Materials, Inc. Santa Clara Computers and Electronics Semiconductor and Microchip Manufacturing
Sanmina Corporation San Jose Computers and Electronics Semiconductor and Microchip Manufacturing
Agilent Technologies, Inc. Santa Clara Telecommunications Telecommunications Equipment and Accessories
Avery Dennison Corporation Pasadena Manufacturing Paper and Paper Products
The Clorox Company Oakland Manufacturing Chemicals and Petrochemicals
Apple Inc. Cupertino Computers and Electronics Consumer Electronics, Parts and Repair
Amgen Inc Thousand Oaks Healthcare, Pharmaceuticals and Biotech Biotechnology
McKesson Corporation San Francisco Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
DIRECTV El Segundo Telecommunications Cable Television Providers
Visa, Inc. San Mateo Financial Services Credit Cards and Related Services
Google, Inc. Mountain View Software and Internet E-commerce and Internet Businesses

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in California since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Design Patterns programming
  • Get your questions answered by easy to follow, organized Design Patterns experts
  • Get up to speed with vital Design Patterns programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Richmond, California Design Patterns Training , Richmond, California Design Patterns Training Classes, Richmond, California Design Patterns Training Courses, Richmond, California Design Patterns Training Course, Richmond, California Design Patterns Training Seminar
training locations
California cities where we offer Design Patterns Training Classes
·Bellflower, California · Compton, CA · Long Beach · Redlands, CA ·Lynwood, California · Santa Clara, CA ·Diamond Bar, California · Victorville, CA · Redding · Modesto, CA ·Daly City, California · Garden Grove, CA ·Temecula, California · Visalia, CA · Walnut Creek · Indio, CA ·Thousand Oaks, California · Burbank, CA ·Redwood City, California · Sunnyvale, CA · Fountain Valley · Manteca, CA ·Bakersfield, California · Stockton, CA ·Lake Elsinore, California · Torrance, CA · Lancaster · Palo Alto, CA ·Richmond, California · Vallejo, CA ·Fullerton, California · Novato, CA · Norwalk · Yuba City, CA ·Redondo Beach, California · Ventura, CA ·Union City, California · Pleasanton, CA · West Covina · Ontario, CA ·San Bernardino, California · Los Angeles (la), CA ·Gardena, California · Chino, CA · Citrus Heights · Hesperia, CA ·Santa Monica, California · National City, CA ·Santa Maria, California · Hanford, CA · Tustin · Mountain View, CA ·Apple Valley, California · Buena Park, CA ·San Diego, California · Fairfield, CA · Laguna Niguel · Whittier, CA ·Costa Mesa, California · Orange, CA ·Watsonville, California · Baldwin Park, CA · Riverside · Rocklin, CA ·Glendale, California · Oxnard, CA ·Oceanside, California · Escondido, CA · Rosemead · Cerritos, CA ·Carlsbad, California · Concord, CA ·Yorba Linda, California · Elk Grove, CA · Oakland · Monterey Park, CA ·Pasadena, California · Antioch, CA ·Alameda, California · Porterville, CA · Rancho Cucamonga · Palmdale, CA ·Milpitas, California · Santa Cruz, CA ·San Marcos, California · Madera, CA · Davis · Sacramento, CA ·Highland, California · Chino Hills, CA ·Rancho Cordova, California · Santa Ana, CA · Murrieta · South Gate, CA ·Delano, California · Livermore, CA ·Napa, California · Rialto, CA · Tracy · Alhambra, CA ·San Mateo, California · Cathedral City, CA ·Camarillo, California · Merced, CA · Huntington Beach · Downey, CA ·Colton, California · Fremont, CA ·Pico Rivera, California · Turlock, CA · Inglewood · Moreno Valley, CA ·Westminster, California · Arcadia, CA ·Simi Valley, California · San Jose, CA · San Francisco · Lakewood, CA ·Folsom, California · Salinas, CA ·Lodi, California · Paramount, CA · Cupertino · Encinitas, CA ·Hayward, California · Tulare, CA ·El Monte, California · Anaheim, CA · Hemet · Vacaville, CA ·Roseville, California · Corona, CA ·San Clemente, California · Carson, CA · Lake Forest · Santa Clarita, CA ·Upland, California · Woodland, CA ·Santa Barbara, California · Fontana, CA · El Cajon · Irvine, CA ·La Mesa, California · Perris, CA ·Vista, California · Berkeley, CA · La Habra · Santee, CA ·Palm Desert, California · San Leandro, CA ·San Rafael, California · Pomona, CA · Clovis · Santa Rosa, CA ·Newport Beach, California · Huntington Park, CA ·Mission Viejo, California · Fresno, CA · Pittsburg · Chula Vista, CA ·South San Francisco, California · Hawthorne, CA ·Petaluma, California · Montebello, CA · Chico

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.